

© 2011 Whamcloud, Inc.

A Scalable Health Network
For Lustre
•  Eric Barton

CTO
Whamcloud, Inc

Lustre User Group
Orlando Fl
April 2011

© 2011 Whamcloud, Inc.

•  Based on LND timeout
–  Independent of Lustre timeout
–  Token buildup if Lustre retries too eagerly

•  Confused by congestion
–  Eager reader assumption
–  Requires long timeout

LNET Fault Detection Today

3 A Scalable Health Network for Lustre

© 2011 Whamcloud, Inc.

•  RPC timeout
–  Sole method of fault detection

•  Dead client discovery
–  Delayed until DLM conflict

•  BAST timeout
–  Cascading timeouts

•  Pinger
–  Keep-alive
–  Eager eviction on client death

Lustre Pinger

4 A Scalable Health Network for Lustre

© 2011 Whamcloud, Inc.

Ping Overhead

5

C0

C1

MDS

OST0

A Scalable Health Network for Lustre

© 2011 Whamcloud, Inc.

Ping Overhead

6

C0

C1

C2

C3

MDS

OST0

OST1

A Scalable Health Network for Lustre

© 2011 Whamcloud, Inc.

Ping Overhead

7

C0

C1

C2

C3

C4

C5

C6

C7

MDS

OST0

OST1

OST2

OST3

A Scalable Health Network for Lustre

© 2011 Whamcloud, Inc.

•  “Every man for himself”
–  No non-local fault notification
–  Inherently non-scalable

•  O(n**2) pings for constant ping interval
•  Compromise on O(n) ping interval

•  Exclusive reliance on in-band RPC timeouts
–  Network and service latency highly variable

•  Depends on load and usage patterns
–  Must distinguish congested v. dead peer

•  False error detection compounds load
–  Timeouts are long to include disk latency and congestion

•  Adaptive timeouts can’t alter the worst case

•  O(n) fault detection latency
–  With a large multiplier

Lustre Fault Detection Today

8 A Scalable Health Network for Lustre

© 2011 Whamcloud, Inc.

•  Recovery “Window”
–  Server must wait for all live clients to reconnect
–  Late replay risky
–  Ensure dependent transactions replay in correct order

•  Commit-on-share avoids need but penalizes normal operation

•  Conservative window duration
–  Clients must first timeout the previous server instance
–  Then allow for two attempts to reconnect

•  First attempt retries same NID
in case of transient communications failure

–  Required if imperative recovery not available

Server Recovery

9 A Scalable Health Network for Lustre

© 2011 Whamcloud, Inc.

Example scenario
•  Configuration

–  File-per-process, 4 stripes/file
–  20,000 clients, 12 processes/client
–  8 x 1MByte RPCs in flight per client * OST
–  100 OSS nodes
–  OSS bandwidth 2.4GB/sec

•  Average OSS request queue depth: ~75,000
•  Average I/O RPC latency: ~30s
•  Minimum safe timeout: ~300s
•  Recovery window: ~1000s

Server Recovery

10 A Scalable Health Network for Lustre

© 2011 Whamcloud, Inc.

•  No non-local fault notifications
–  Servers evict clients independently

•  Clients may write OST objects after MDS eviction
–  Problem for…
–  Create-on-write

•  Must guarantee client cannot re-create destroyed object
–  OST-derived attribute caching on MDS

•  Size (SOM), Dirty flag (HSM)
•  Must invalidate MDS cache on OST update

Client Eviction

11 A Scalable Health Network for Lustre

© 2011 Whamcloud, Inc.

•  Relentlessly increasing scale
–  Today

•  100s of server nodes, 100,000s of client nodes
•  MTTF of 100s of hours

–  Anticipated
•  1000s of server nodes, 1,000,000s of client nodes
•  MTTF of 100s of minutes

•  Prompt fault handling mandatory
–  Avoidance
–  Recovery

Moore’s Law

12 A Scalable Health Network for Lustre

© 2011 Whamcloud, Inc.

•  Low latency fault detection
–  Servers and clients
–  Reliable

•  Low latency global notification
–  Reliable to servers, best efforts to clients

•  Server collectives
–  Close-coupled state shared between servers

•  Scalable
–  1,000s servers, 1,000,000s clients

•  Minimal administration / configuration
•  Low overhead

–  Server CPU & Networking

Health Network Requirements

13 A Scalable Health Network for Lustre

© 2011 Whamcloud, Inc.

•  Servers and LNET routers
–  Not malicious

•  Try to participate constructively in HN protocols
•  May be buggy (“flapping”)

–  Many (all) may crash/restart together
•  Cluster reboot / power fail

–  Normally don’t crash/restart
•  Population stable for at least 10s of minutes at a time
•  Easily long enough for collectives to succeed

•  Clients
–  Can’t be relied upon
–  Population may never reach stability

•  (Re)connection is O(n) overhead
–  Normal operation is lower overhead

Health Network Assumptions

14 A Scalable Health Network for Lustre

© 2011 Whamcloud, Inc.

•  Additional uncongested virtual network
–  Hi-priority messages

•  Extension of LND RDMA setup / zero-copy completion
–  No routing

•  Guaranteed eager reader
–  Rate limit ingest

•  Discard when per-peer message rate exceeds agreed threshold
•  Underutilization provides latency guarantee

•  Peer death detection
–  Prompt fault detection while utilized

•  Message timeout scaled to link latency
•  no networks with “beer” timeouts

–  Not fooled by congestion
•  Hi-priority keepalives on backpressure

–  Dead peer == /dev/null

LNET

15 A Scalable Health Network for Lustre

© 2011 Whamcloud, Inc.

•  Spanning tree over servers and LNET routers
–  Paxos root

•  Highly available
–  Wide / shallow

•  Branching ratio O(forwarding_latency * send_rate)
–  Clients balanced across tree nodes/routers in same LNET network

•  Parent node selection
–  Root maintains tree topology

•  Detects “flapping” nodes
–  Root LNET network nodes

•  Query root directly
–  Non-root LNET network nodes

•  Proxy query via any local router

Health Network Construction

16 A Scalable Health Network for Lustre

© 2011 Whamcloud, Inc.

•  Tree version
–  Increment on server/router attach/death

•  Requests
–  Forwarded to root and transformed into a notification

•  Rate limit for congestion avoidance
–  Combine compatible requests from self/children

•  Collective requests block for all children
–  Destroy collective requests on tree version change

•  Notifications
–  Forward/broadcast down tree towards leaves
–  Destroy duplicate notifications
–  Requestors retry on version change

Tree communications

17 A Scalable Health Network for Lustre

© 2011 Whamcloud, Inc.

•  Servers/Routers
–  Sustain minimum message rate to parent and children

•  Send keepalives while idle
–  Regard immediate peers as dead on

•  Sufficient interval of silence
•  LNET notification

–  On parent death, rejoin tree retaining existing children
–  On child death, send notification request

•  Root discards if stale

•  Clients
–  Sustain minimum message rate to monitoring tree node

•  Scale to reflect increased branching ratio

Peer Liveness

18 A Scalable Health Network for Lustre

© 2011 Whamcloud, Inc.

•  Scalable server collectives
–  Single system image tables
–  Gang-scheduling for true QoS
–  Scalable distributed transactions (epochs)

•  Scalable, reliable server restart notifications
–  Reduced reliance on congestion-based timeouts
–  Collectives distribute Imperative Recovery target status table

•  No need to back off to timeout based recovery

•  Scalable, reliable global client connection/eviction
–  Clients need not connect to all server nodes immediately on startup
–  Lock callbacks can “try harder”
–  No O(n**2) pinger overhead
–  Safeguards create-on-write, SOM, HSM “dirty” flag

Benefits

19 A Scalable Health Network for Lustre

© 2011 Whamcloud, Inc.

•  Eric Barton
CTO
Whamcloud, Inc.

Thank You

