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Shared File vs FPP

• Two principal approaches to writing out data:
File-per-process or single shared file

• File-per-process scales well in Lustre, shared 
file does not

• File-per-process has problems:
• Heavy metadata load for large jobs
• Many cores  Many files
• Getting worse: ~250,000 cores on current top 

10 x86 machines



Shared file IO

• Common HPC applications use MPIIO library to 
do ‘good’ shared file IO

• Technique is called collective buffering
• IO is aggregated to a set of nodes, each of which 

handles parts of a file
• Writes are strided, non-overlapping
• Example: Client 1 is responsible for writes to block 

0, block 2, block 4, etc., client 2 is responsible for 
block 1, block 3, etc.

• Currently arranged so there is one client per OST



Shared File Scalability

• Bandwidth best at one client per OST 
• Going from one to two clients reduces 

bandwidth dramatically, adding more after 
two doesn’t help much

• In real systems, OST can handle full 
bandwidth of several clients (FPP hits these 
limits)

• For example, latest Seagate system OSTs 
have enough bandwidth for 8+ Cray clients 
per OST



Shared File Scalability

• Maxes out at one client per OST
• In real systems, takes three or more 

clients to max out bandwidth of an OST



Why doesn’t shared file IO scale?

• In ‘good’ shared file IO, writes are strided, 
non-overlapping

• Since writes don’t overlap, should be possible 
to have multiple clients per OST without lock 
contention

• With > 1 client per OST, writes are serialized 
due to LDLM* extent lock design in Lustre

• 2+ clients are slower than one due to lock 
contention

*LDLM locks are Lustre’s distributed locks, 
used on clients and servers



Extent Lock Contention

0 1 2 3 4 5 6 7 8

• Single OST view of a file, also applies to 
individual OSTs in a striped file

• Two clients, doing strided writes
• Client 1 asks to write segment 0 (Assume 

stripe size segments)



Extent Lock Contention

0 1 2 3 4 5 6 7 8

• No locks on file currently
• Server expands lock requested by client 1, 

grants a lock on the whole file



Extent Lock Contention

0 1 2 3 4 5 6 7 8

• Client 2 asks to write segment 1
• Conflicts with the expanded lock granted 

to client 1



Extent Lock Contention

0 1 2 3 4 5 6 7 8

• Lock assigned to client 1 is called back
• Client 2 lock request is processed…



Extent Lock Contention

0 1 2 3 4 5 6 7 8

• Lock for client 1 was called back, so no 
locks on file currently

• OST expands lock request from client 2
• Grants lock on rest of file…



Extent Lock Contention

0 1 2 3 4 5 6 7 8

• Client 1 asks to write segment 2
• Conflicts with the expanded lock granted to 

client 2
• Lock for client 2 is called back…
• Etc.  Continues throughout IO.



Extent Lock Contention

• Multiple clients per OST are completely 
serialized, no parallel writing at all

• Even worse: Additional latency to 
exchange lock

• Mitigation: Clients generally are able to 
write > one segment before giving up lock



Extent Lock Contention

• What about not expanding locks?
• Avoids contention, clients can write in 

parallel
• Surprise: It’s actually worse
• This means we need a lock for every write, 

latency kills performance
• That was the blue line at the very bottom 

of the performance graph…



Proposal: Lock Ahead
• Lock ahead: Allow clients to request locks on file 

regions in advance of IO
• Pros:
Request lock on part of a file with an IOCTL, server 
grants lock only on requested extent (no expansion)
Flexible, can optimize other IO patterns
Relatively easy to implement
• Cons:
Large files drive up lock count and can hurt 
performance
Pushes LDLM in to new areas, exposes bugs



Lock Ahead: Request locks to 
match the IO pattern

0 1 2 3 4 5 6 7 8

• Imagine requesting locks ahead of time
• Same situation: Client 1 wants to write 

segment 0
• But before that, it requests locks…



Lock Ahead: Request locks to 
match the IO pattern

0 1 2 3 4 5 6 7 8

• Request locks on segments the client 
intends to do IO on

• 0, 2, 4, etc.
• Lock ahead locks are not expanded



Lock Ahead: Request locks to 
match the IO pattern

0 1 2 3 4 5 6 7 8

• Client 2 requests locks on its segments
• Segments 1,3,5, etc.



Lock Ahead: Request locks to 
match the IO pattern

0 1 2 3 4 5 6 7 8

• With locks issued, clients can do IO in 
parallel

• No lock conflicts.



What about Group Locks?
• Lustre has an existing solution: Group locks
• Basically turns off LDLM locking on a file for 

group members, allows file-per-process 
performance for group members

• Tricky: Since lock is shared between clients, 
there are write visibility issues (Clients 
assume they are the only one with a lock, do 
not notice file updates until the lock is 
released and cancelled)

• Must release the lock to get write visibility 
between clients



What about Group Locks?

• Works for some workloads, but not OK for 
many others

• Not really compatible with HDF5 and other 
such file formats:
In file metadata updates require write 
visibility between clients during the IO

• It’s possible to fsync and release the lock 
after every write, but speed benefits are 
lost



Lock Ahead: Performance

• Early performance results show 
performance equal to file-per-process or 
group locks

• Unable to test large files (200 GB+) due to 
bugs in current code



Lock Ahead: Performance

• Intended to match up with MPIIO collective 
buffering feature described earlier

• Freely available in the Lustre ADIO, 
originally from Argonne, improved by 
CFS/Sun

• IOR –a MPIIO –c
• Cray will make a Lustre ADIO patch 

available
• Codes need to be rebuilt but not modified



Lock Ahead: Implementation

• Re-uses much of Asynchronous Glimpse 
Lock (AGL) implementation

• Adds an LDLM flag to tell server not to 
expand lock ahead locks

• Other issues will be covered in detail at a 
developer’s day talk after LUG



Lock Ahead: When can I have it?

• Targeted as a feature for Lustre 2.8
• Depends on client & server side changes: 

No using this feature with new clients with 
old servers



What’s up with Strided Locks?

• Proposed previously, lock ahead is a 
simpler solution

• Incomplete prototype is still up at LU-6148
• Work on hold: Lock ahead locks are 

simpler and may meet our needs
• We’ll see…



Other Information

• Thank you to Cray engineers David Knaak 
Bob Cernohous for inspiration and 
assistance testing

• Thanks to Jinshan Xiong and Andreas 
Dilger of Intel for suggestion of lock ahead 
and assistance with design



Finally:

• Lock ahead work in LU-6179
• MPI-IO ADIO patch will be linked from 

there (will try to submit upstream)
• For ugly implementation details, come to 

the developer’s day discussion
• Any questions?
• Happy to answer questions later or by 

email (paf@cray.com)

mailto:paf@cray.com
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