
Shared File Performance
Improvements

LDLM Lock Ahead

Patrick Farrell (paf@cray.com)

Shared File vs FPP

• Two principal approaches to writing out data:
File-per-process or single shared file

• File-per-process scales well in Lustre, shared
file does not

• File-per-process has problems:
• Heavy metadata load for large jobs
• Many cores  Many files
• Getting worse: ~250,000 cores on current top

10 x86 machines

Shared file IO

• Common HPC applications use MPIIO library to
do ‘good’ shared file IO

• Technique is called collective buffering
• IO is aggregated to a set of nodes, each of which

handles parts of a file
• Writes are strided, non-overlapping
• Example: Client 1 is responsible for writes to block

0, block 2, block 4, etc., client 2 is responsible for
block 1, block 3, etc.

• Currently arranged so there is one client per OST

Shared File Scalability

• Bandwidth best at one client per OST
• Going from one to two clients reduces

bandwidth dramatically, adding more after
two doesn’t help much

• In real systems, OST can handle full
bandwidth of several clients (FPP hits these
limits)

• For example, latest Seagate system OSTs
have enough bandwidth for 8+ Cray clients
per OST

Shared File Scalability

• Maxes out at one client per OST
• In real systems, takes three or more

clients to max out bandwidth of an OST

Why doesn’t shared file IO scale?

• In ‘good’ shared file IO, writes are strided,
non-overlapping

• Since writes don’t overlap, should be possible
to have multiple clients per OST without lock
contention

• With > 1 client per OST, writes are serialized
due to LDLM* extent lock design in Lustre

• 2+ clients are slower than one due to lock
contention

*LDLM locks are Lustre’s distributed locks,
used on clients and servers

Extent Lock Contention

0 1 2 3 4 5 6 7 8

• Single OST view of a file, also applies to
individual OSTs in a striped file

• Two clients, doing strided writes
• Client 1 asks to write segment 0 (Assume

stripe size segments)

Extent Lock Contention

0 1 2 3 4 5 6 7 8

• No locks on file currently
• Server expands lock requested by client 1,

grants a lock on the whole file

Extent Lock Contention

0 1 2 3 4 5 6 7 8

• Client 2 asks to write segment 1
• Conflicts with the expanded lock granted

to client 1

Extent Lock Contention

0 1 2 3 4 5 6 7 8

• Lock assigned to client 1 is called back
• Client 2 lock request is processed…

Extent Lock Contention

0 1 2 3 4 5 6 7 8

• Lock for client 1 was called back, so no
locks on file currently

• OST expands lock request from client 2
• Grants lock on rest of file…

Extent Lock Contention

0 1 2 3 4 5 6 7 8

• Client 1 asks to write segment 2
• Conflicts with the expanded lock granted to

client 2
• Lock for client 2 is called back…
• Etc. Continues throughout IO.

Extent Lock Contention

• Multiple clients per OST are completely
serialized, no parallel writing at all

• Even worse: Additional latency to
exchange lock

• Mitigation: Clients generally are able to
write > one segment before giving up lock

Extent Lock Contention

• What about not expanding locks?
• Avoids contention, clients can write in

parallel
• Surprise: It’s actually worse
• This means we need a lock for every write,

latency kills performance
• That was the blue line at the very bottom

of the performance graph…

Proposal: Lock Ahead
• Lock ahead: Allow clients to request locks on file

regions in advance of IO
• Pros:
Request lock on part of a file with an IOCTL, server
grants lock only on requested extent (no expansion)
Flexible, can optimize other IO patterns
Relatively easy to implement
• Cons:
Large files drive up lock count and can hurt
performance
Pushes LDLM in to new areas, exposes bugs

Lock Ahead: Request locks to
match the IO pattern

0 1 2 3 4 5 6 7 8

• Imagine requesting locks ahead of time
• Same situation: Client 1 wants to write

segment 0
• But before that, it requests locks…

Lock Ahead: Request locks to
match the IO pattern

0 1 2 3 4 5 6 7 8

• Request locks on segments the client
intends to do IO on

• 0, 2, 4, etc.
• Lock ahead locks are not expanded

Lock Ahead: Request locks to
match the IO pattern

0 1 2 3 4 5 6 7 8

• Client 2 requests locks on its segments
• Segments 1,3,5, etc.

Lock Ahead: Request locks to
match the IO pattern

0 1 2 3 4 5 6 7 8

• With locks issued, clients can do IO in
parallel

• No lock conflicts.

What about Group Locks?
• Lustre has an existing solution: Group locks
• Basically turns off LDLM locking on a file for

group members, allows file-per-process
performance for group members

• Tricky: Since lock is shared between clients,
there are write visibility issues (Clients
assume they are the only one with a lock, do
not notice file updates until the lock is
released and cancelled)

• Must release the lock to get write visibility
between clients

What about Group Locks?

• Works for some workloads, but not OK for
many others

• Not really compatible with HDF5 and other
such file formats:
In file metadata updates require write
visibility between clients during the IO

• It’s possible to fsync and release the lock
after every write, but speed benefits are
lost

Lock Ahead: Performance

• Early performance results show
performance equal to file-per-process or
group locks

• Unable to test large files (200 GB+) due to
bugs in current code

Lock Ahead: Performance

• Intended to match up with MPIIO collective
buffering feature described earlier

• Freely available in the Lustre ADIO,
originally from Argonne, improved by
CFS/Sun

• IOR –a MPIIO –c
• Cray will make a Lustre ADIO patch

available
• Codes need to be rebuilt but not modified

Lock Ahead: Implementation

• Re-uses much of Asynchronous Glimpse
Lock (AGL) implementation

• Adds an LDLM flag to tell server not to
expand lock ahead locks

• Other issues will be covered in detail at a
developer’s day talk after LUG

Lock Ahead: When can I have it?

• Targeted as a feature for Lustre 2.8
• Depends on client & server side changes:

No using this feature with new clients with
old servers

What’s up with Strided Locks?

• Proposed previously, lock ahead is a
simpler solution

• Incomplete prototype is still up at LU-6148
• Work on hold: Lock ahead locks are

simpler and may meet our needs
• We’ll see…

Other Information

• Thank you to Cray engineers David Knaak
Bob Cernohous for inspiration and
assistance testing

• Thanks to Jinshan Xiong and Andreas
Dilger of Intel for suggestion of lock ahead
and assistance with design

Finally:

• Lock ahead work in LU-6179
• MPI-IO ADIO patch will be linked from

there (will try to submit upstream)
• For ugly implementation details, come to

the developer’s day discussion
• Any questions?
• Happy to answer questions later or by

email (paf@cray.com)

mailto:paf@cray.com

	Shared File Performance Improvements
	Shared File vs FPP
	Shared file IO
	Shared File Scalability
	Shared File Scalability
	Why doesn’t shared file IO scale?
	Extent Lock Contention
	Extent Lock Contention
	Extent Lock Contention
	Extent Lock Contention
	Extent Lock Contention
	Extent Lock Contention
	Extent Lock Contention
	Extent Lock Contention
	Proposal: Lock Ahead
	Lock Ahead: Request locks to match the IO pattern
	Lock Ahead: Request locks to match the IO pattern
	Lock Ahead: Request locks to match the IO pattern
	Lock Ahead: Request locks to match the IO pattern
	What about Group Locks?
	What about Group Locks?
	Lock Ahead: Performance
	Lock Ahead: Performance
	Lock Ahead: Implementation
	Lock Ahead: When can I have it?
	What’s up with Strided Locks?
	Other Information
	Finally:

