LLNL Lustre Centre of Excellence

Mark Gary 4/23/07

This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

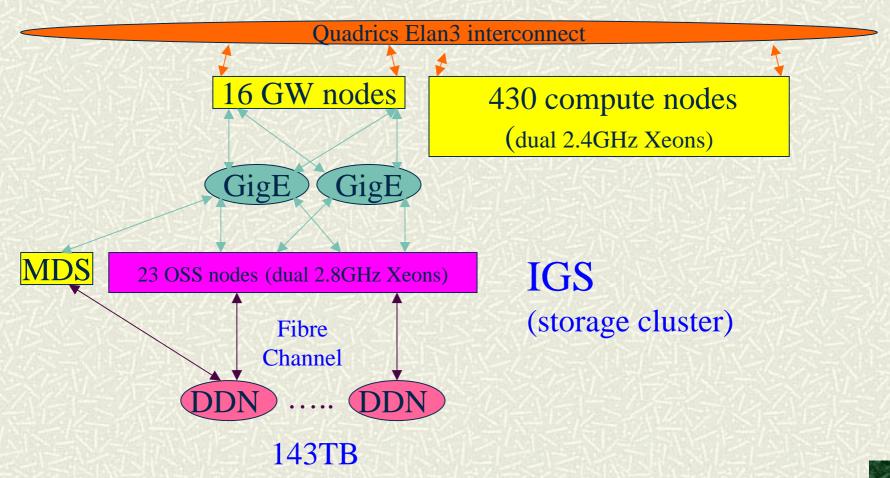
UCRL-PRES-230018

LLNL is home to a Lustre Centre of Excellence (LCE)

- We enjoy a close working partnership with CFS
- +The Lustre Centre of Excellence (LCE) is written into our ongoing CFS support contract.
- Lustre, contractual or not, to be an LCE effort item.
- **LCE** activities at LLNL are many...

LLNL LCE Effort Areas

- Selected CFS/LLNL efforts
 - At-scale testing, bug fixing, performance issue analysis
 - fsck:
 - Debugging/fixing
 - Acceleration
 - Metadata speed up
 - Adaptive timeouts
 - Lustre free space management
- **LLNL** development efforts
 - ZFS prototype
 - Failover implementation
 - ◆ Lustre Monitoring Tool 2 (LMT2)
- Tri-Lab PathForward efforts


At-scale testing, bug fixing and analysis

- We operate a very large test environment for use by ourselves and CFS.
 - We run around-the-clock at-scale testing of all of our releases
 - Scheduled dedicated testing by CFS benefits the entire community
- +As in other areas, our scale regularly reveals bugs and performance issues that don't show up in small-scale tests:
 - We are constantly working with CFS on issues revealed at-scale
 - ◆LLNL's top-10 bugs prioritized each week
 - Weekly meeting with CFS to review progress \(\)
 and plans

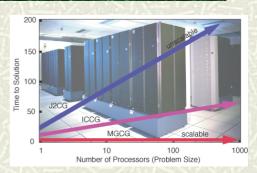
At-scale Lustre test resource

ALC-ltest

Fsck improvements

Improvements include

- Fixing segfault due to corrupt extent headers
- Fixing segfault on extended attribute corruption
- Improving e2fsck heuristics for detecting corrupted inodes
- Shared block resolution implement alternative to cloning
- Coverity-detected bugs, fixes
- **♦...**


Speed-up milestone

- Halve the time for fscks
- Based on looking at only active inodes (keeping track of inode allocation high-water mark).

Metadata speedup

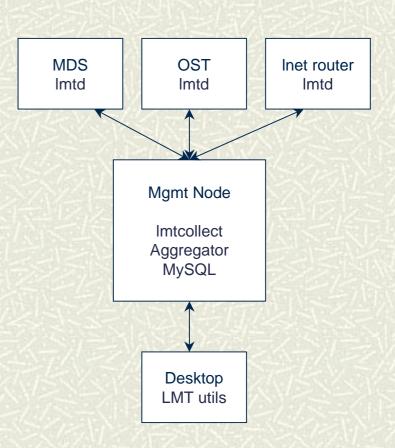
- **+**Goal is to:
 - ◆Cut Is –I time by 50%
 - ◆Cut rm –r time by 75%

- ◆Improve performance (LRU create test) by 70%
- +Achieved by client-side read ahead for MDS (for directory contents and parallel fetching of attributes)
- Dynamic sizing and automatic tuning (client-based lock timeout) of the client LRU (lock) list

Adaptive timeouts

- +Static timeouts used by callers of Lustre RPCs cause difficulties in unusual-load scenarios
- **+**CFS is modifying calls to RPCs and other Lustre components to dynamically respond to RPC delays
- Make all Lustre timeouts sensitive to recent completion times, and feedback.

Free space management


- + Automate and enhance Lustre free space management:
 - Detect full OSTs and adapt
 - Automatic space-balancing and migration
 - Administrator-initiated space balancing
 - Administrator-initiated full migration of OSTs
 - Administrator-initiated on-line defragmentation of OSTs

Lustre Monitoring Tools v2 – LMT2

- ♣ The 2nd generation of Lustre Monitoring Tools (LMT) uses a MySQL database backend for storing and retrieving Lustre information related to OSTs, the metadata servers, and the routers. As a result, LMT applications can analyze Lustre performance either in real-time or over specified historical periods.
- There are currently three LMT2 apps in development:
 - Istat: simple text display that operates like Unix "netstat" (v1.0 complete)
 - Itop: curses-based tool that operates like Unix "top" (v1.0 complete)
 - jwatch (working title): new GUI with extensive charting capabilities (v1.0 beta)

LMT2 "top" – ltop

- ♣ Multiple "views" router, router group, filesystem, OST, OSS, MDS, ...
- Low overhead
- Curses-based

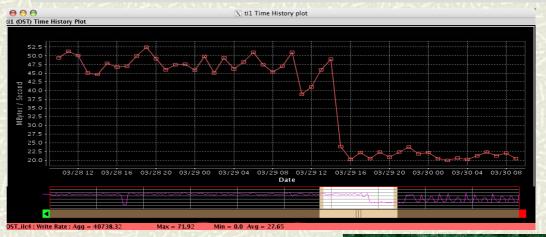
)	10:05:03	<u>X</u> ;			
Filesystem ti1 ti2	Read MB/s 76.40 0.00	Write MB/s 70.60 0.00	%Space Used 11.49 ⋄,⋄⋄	XInodes Used	
Aggregate	76.40	70,60	11.49	0.00	

00		X xter	m		
1 2007-04-02 10:	02:42				
		BN MB/s	XCPU Used		
Router Group	Max	Avg	Agg	Max	Avg
adev[4-6 ⁻]	48.35	23.96	Agg 71 . 88	7.62	3.89
odev[8-9]	****	0.00	0.00	****	0.00
tdev[5-6]	140.08	138,58	277.16	8.38	8.25
Maximum Aggregate	140.08	138.58	277.16 349.04	8.38	8,25

0 0		∑ xt	erm		
1 2007-04-02	10:04:05				
OST Name	Read MB/s	Write MB/s	XCPU Used	%Space Used	%Inodes Used
0ST_i1c2	54,25	0.00	7,57	12,29	0.00
0ST_i1c3	83.60	0.00	14,56	11,69	0.00
0ST_ilc4	90.03	0.00	14,37	11.51	0.00
0ST_i1c5	59.60	0.00	8.95	11.16	0.00
Maximum	90,03	0.00	14.56	12,29	0.00
Average	71,87	0.00	11.36	11.67	0.00
Aggregate	287.48	0.00			

) 🖯	X xterm	
2007-04-02	10:03:13	
Router Name	BN MB/s	%CPU Used
adev4	38,62	11.60
adev5	42,32	12,10
adev6	***	***
Maximum	42,32	12,10
Average	26.98	7.90
Aggregate	80.95	
Router Name	BN MB/s	%CPU Used
odev8	***	***
odev9	***	***
Maximum	***	***
Average	0.00	0.00
Aggregate	0.00	
Router Name	BN MB/s	%CPU Used
tdev5	117.87	6.58
tdev6	116.67	6.73
Maximum	117.87	6.73
Average	117,27	6,65
Aggregate	234.54	•

) 🖯	X xterm					
2007-04-02 1	0:05:55					
MDS Name	XCPU Used	%Space	Used	%Inode	Used	
mds_p_ti1	0.00		2.21		0.88	
Operation	Sam	ples 5	amples/s	ec	Avg Value	5td Dev
ldlm_enqueue		0	٥.	00	***	***
mds_connect		0	٥.	00	****	***
mds_disconnect		0	٥.	00	****	***
mds_getattr		0	٥.	00	****	***
mds_getstatus		0	٥.	00	****	***
mds_reint		0	٥.	00	****	***
mds_statfs		0	٥.	00	****	****
mds_sunc		0	٥.	00	***	***
obd_ping		1	٥.	20	56.00	***
req_active		1	0.	20	1.00	***
req_qdepth		1	0.	20	0.00	****
req_waittime		1	٥.	20	12.00	***
reqbuf_avail		1	٥.		256.00	***



The LMT2 GUI

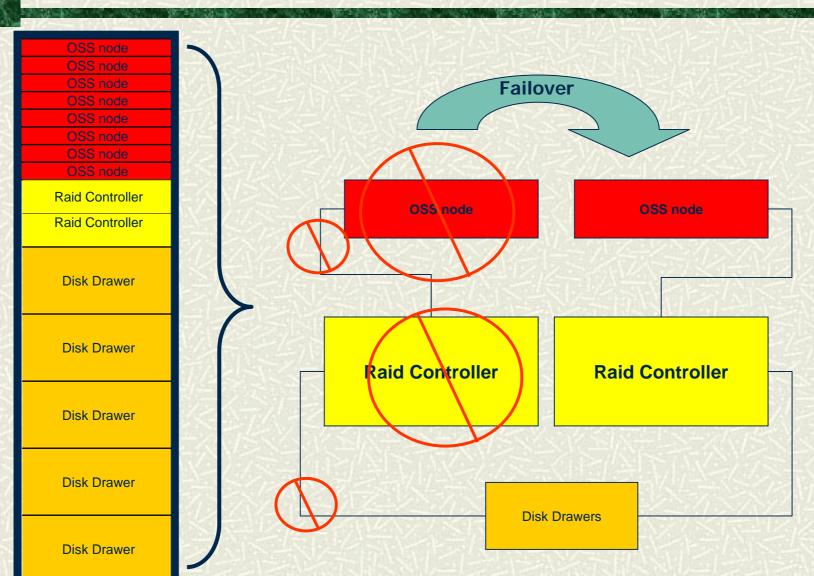
Start with xwatch-lustre functionality, then add:

- ♣ New views (OSS, Filesystem, Router Group, …)
- Plotting capability (historical trends, heartbeat, ...)
- Customization features
- ↓ Full-system health "at a glance"
- Client display

New graphical chart control in development.

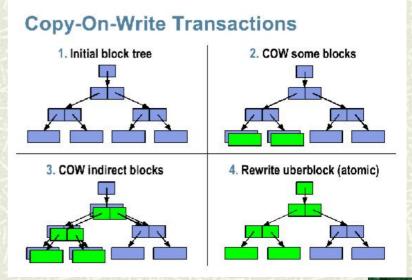
LMT2 Plans

- LMT 2.0 release [internal]
- ↓ LMT 2.0 release [external]
- Extend database access class
- ♣ Add more views to GUI and Itop
- Release version LMT 2.1
- Add views for OSS-specific data in LMT utilities
- Extend new xwatch-lustre to include a global health view of Lustre
- ♣ Release version LMT 2.2
- Add support for viewing client data
- ♣ Release version LMT 2.3



Failover implementation

- **4**Linux-ha based
- Initial implementation currently undergoing test
- Priority on fencing and prevention of data loss requirements
- Based upon Release 2 of Linux-HA software (active development, testing, fixing)


Failover

ZFS prototype

- **LLNL** is launching a prototyping effort to investigate the viability of running OSTs atop Sun's ZFS file system.
- +Our prototyping effort only goes as far as porting a portion of ZFS into the Linux kernel
- Our goal is to learn the viability of the partial port and let the results guide any future work

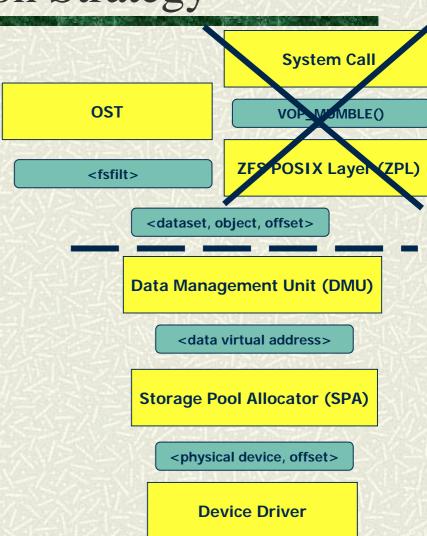
Lustre/ZFS motivation

EXT3 Problems

- ♣Max OST FS Size of 16-32TB
- Offline fsck recovery time
- Data corruption goes unnoticed
- Crashes, corruption, fsck challenges and complexity

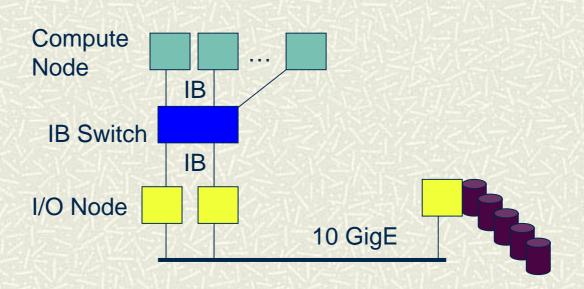
ZFS

- Max OST FS size unlimited by file system
- Consistency checking is online
- Every block is checksummed (metadata and data)


Other ZFS benefits

- +Copy-on-write may result in more streaming I/O
- More redundancy options (RAIDZ2, metadata "ditto blocks",...)
- Administrative flexibility
- **4** JBOD & other hdwr options

Lustre/ZFS Integration Strategy


- Replace EXT3 on OSTs with ZFS
- ♣Port ZFS Data Management Unit (DMU) and Storage Pool Allocator (SPA) only
- Requires fsfilt to DMU integration

Tri-Lab PathForward Efforts

- +Tri-Lab (LANL, SNL, LLNL)/HP/CFS efforts
 - Infiniband
 - Compute nodes speak only IB
 - I/O nodes translate to IP for 10GigE
 - Lustre storage exists on 10GigE LAN
 - Clustered MDS
 - Security

Conclusion

- ♣The LLNL/CFS relationship is active and varied:
 - At-scale testing, bug fixing, performance issues
 - fsck improvements
 - Metadata speed up
 - Adaptive timeouts
 - Lustre free space management
- **LLNL** is pursuing a number of development efforts
 - ZFS prototype
 - ◆Lustre Monitoring Tool 2 (LMT2)
 - Failover implementation
- ♣Tri-Labs, HP and CFS are working other areas

The LCE is working and benefiting the entire Lustre community