NCSA Lustre Site Update

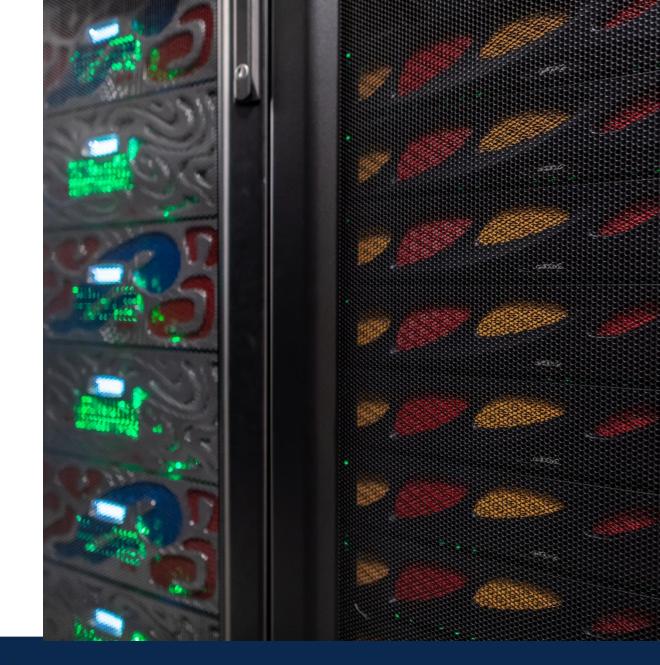
J.D. Maloney | Lead Storage Engineer | NCSA

UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN

Prepared for: LUG 2025

Outline

- Lustre Usage @ NCSA
- Experiences with Nodemap in Production
- Early Results of CSDC in production
- Experience with DNE3 with "many" MDTs
- Versity S3 Gateway with Lustre

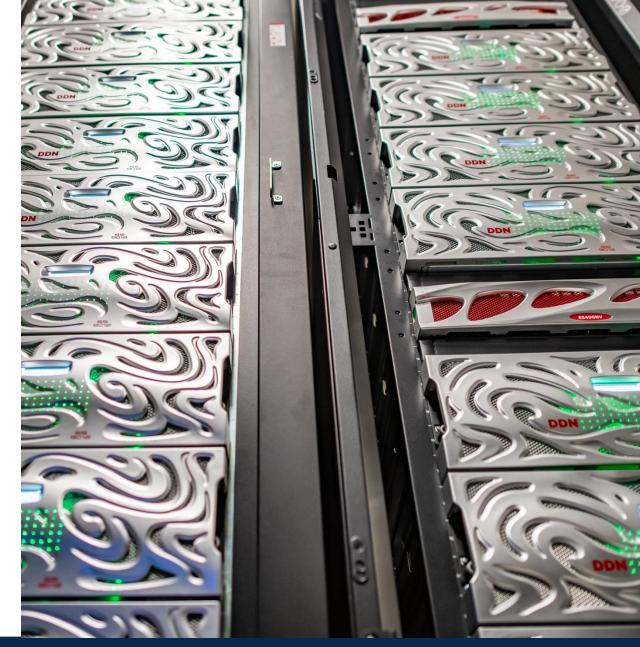

The Highlights

- 5 Lustre namespaces under management
- Aggregate Lustre capacity is 36PB usable
 - ~60% of NCSA's active storage capacity
 - ~5PB of this is NVME
- Aggregate IOR of ~1.2TB/s across all Lustre file systems
- Fastest FS at ~850GB/s; Largest FS is 25PB (not the same file system)
- All file systems running Lustre 2.15 (ExaScaler 6.3.X)
- All major fabrics represented (Ethernet, Infiniband, Slingshot)

Delta ("Delta" + "DeltaAI")

- 12 x ES400NVX2
 - o 24 x 15.36TB Gen4 NVME
 - 4 MDT + 8 OST per appliance
- 3 x ES7990X
 - 176 x 16TB HDD
 - 4 OST per appliance
- All appliances directly connected to HPE Slingshot 11 fabric
 - Leveraging the tcp driver for communication
 - Separate SS fabric for storage that peers at 1TB/s to each Delta/DeltaAI SS fabrics

Delta ("Delta" + "DeltaAl")


- Single namespace (across all 48 MDTs) data placement controlled by PFL
 - /work/hdd/\$alloc → 7990X OSTs
 - /work/nvme/\$alloc → 400NVX2 OSTs
- OST pool quotas used to enforce each allocation's usage within each tier
- Rolling out an altered PFL with compression on the NVME tier

Taiga

- 2 x ES400NVX
 - o 12 x 15.36TB Gen3 NVME
 - 352 x 18TB HDD
 - 1 MDT + 16 OST (8 NVME + 8 HDD OSTs)
- 1 x ES 400NVX2
 - o 12 x 15.36TB Gen 4 NVME
 - 440 x 18TB HDD
 - 1 MDT + 18 OST (8 NVME + 10 HDD OSTs)
- 1 x ES18KX
 - o 24 x 7.68TB Gen 3 NVME
 - 900 x 12TB HDD
 - 1 MDT + 20 OST (8 NVME + 12 HDD OSTs)
- Backend HDR Infiniband Fabric

Taiga

- Makes extensive use of LNET routers
 - 17 routers connect Taiga to 6 distinct HSNs across various clusters (Eth, IB, SS)
- Leveraging the Lustre nodemap to enable I/O from clients leveraging Illinois Auth (instead of NCSA Auth)
- Made available via numerous mechanisms:
 - o Native Lustre
 - o Globus
 - o NFS
 - o SMB
 - o **S3**

- Kubernetes
- Jupyter
 Notebooks
- Web Gateway
 - (soon)

Other

• Nightingale

• Controlled data system (ePHI, CUI, etc.)

• ICCP

Illinois /scratch FS (very early ES400NVX3 system)

• Innovative Systems Lab

• Providing /scratch for NCSA's hardware testbed

Experiences with Nodemap in Production

- NCSA operates systems in two different authentication domains
 - o NCSA LDAP
 - Illinois Active Directory
- NCSA LDAP underpins our national and industry focused systems that serve users across the United States
- Illinois Active Directory is used on systems that are deployed specifically for Illinois research teams
 - $\circ~$ Gives users a common identity that they already use on campus
 - Eases integration with other systems on the Urbana-Champaign campus, especially domain joined machines and workstations

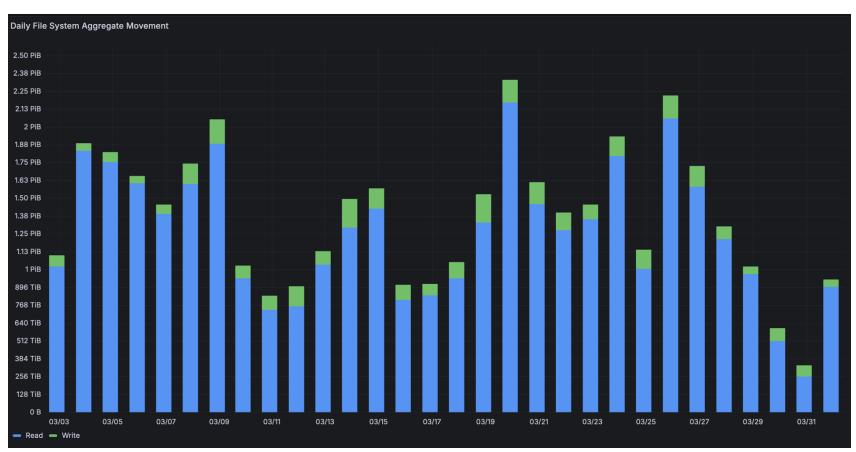
Experiences with Nodemap in Production

- Historically file systems served either authentication domain but not both due to lack of uid/gid alignment between the systems
- In January 2025, all primary compute systems servicing Illinois researchers were moved into our NPCF facility

 Allowed for a possible merge with Taiga for capacity storage (/projects)
- Illinois systems sit behind 4 LNET routers that translate between HDR200 & 200GbE

 All clients behind these routers are subject to the nodemap policy
- Currently have ~9,000 UIDs being mapped and ~600 GIDs
 - These numbers growing daily

[root@tgio01 ~]# lctl nodemap_info IllinoisCC | grep "idtype: uid" | wc -l
8944
[root@tgio01 ~]# lctl nodemap_info IllinoisCC | grep "idtype: gid" | wc -l
591


Experiences with Nodemap in Production

- Automation for new users/groups to map is already in place and keeps up with changes every 30 minutes
 - \circ Should be able to speed this up to every ~10 minutes soon
- Working through process for removing users from the nodemap when they leave the Illinois system
 - $\circ~$ Handy to know who owned the data...but also need to keep the nodemap clean
 - $\circ~$ Likely going to be a quarterly cleanup that we manually trigger and oversee
- Additional mapping of UIDS/GIDs is about to get underway as we deploy a system that supports the non-UIUC Illinois campuses (who each have own AD)
 - $_{\odot}~$ We look forward to the dynamic nodemap features slated to land in 2.17 $_{\odot}$

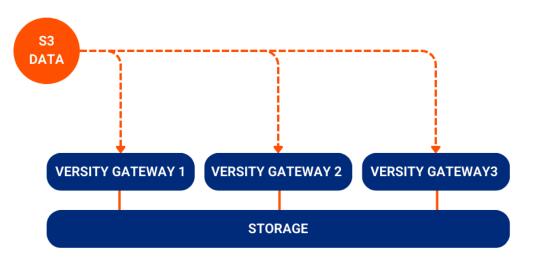
- Broad appeal for this feature with the Delta Project Office, External Advisory Board, and users
 - Never enough NVME capacity for researchers
 - Required no user-facing code changes or Lustre "knowledge"...it came "free"
- Deployed on Delta file system as part of the PFL for /work/nvme
 At present only a subset of allocations; doing a progressive roll out
- Usage started with early testing of the feature in early Fall 2024
 - Initially didn't have support for ARM (Nvidia GraceHopper on DeltaAI) which delayed the ability to start full rollout
 - While waiting for ARM support did testing to choose optimal compression algorithm using Delta's x86_64 (AMD Milan) nodes

- Factors in choosing compression algorithm
 - Obviously want as much compression as possible without meaningful workload performance impact
 - Vast majority of compute nodes are quad or octo GPU equipped (A40, A100, H200, GH200), those are the compute engines used almost exclusively...CPUs on them are generally not fully taxed
 - Large read-write imbalance in favor or read for workflows on this system

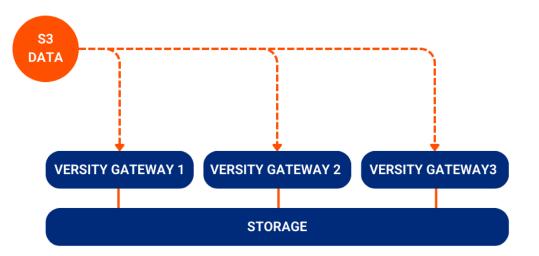
- Settled on lz4hc for our default algorithm
 - Ended up seeing better results than we'd anticipated
 - ~1.3x reduction on real user data on allocations we've scanned the results on
 - As expected, files generally either compress decently...or not at all

- Performance testing with CSDC enabled
 - Focused on user-workload performance and not synthetic benchmark performance
 - NCSA's Application Support team ran 7 representative micro-benchmarks using the more popular applications that run on DeltaAI (pytorch, tensorflow, etc.)
 - Found no meaningful workload slow downs with compression enabled, all variances within error margins
- Coordinated rollout strategy
 - Pushing out to more active allocations first
 - Watching to ensure there are no major job run-time variances (so far none)
 - \circ $\,$ Hope to have fully rolled out by June 2025 $\,$

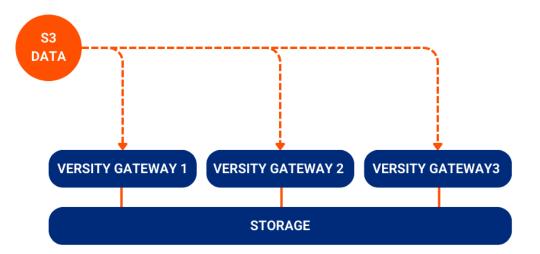
Experience with DNE3 with "many" MDTs


- Delta's /work FS features 48 total MDTs
 - $_{\odot}~$ Equally balanced with 1 per stack on each ES400NVX2
 - \circ ~257 million inodes per MDT (~12.3 billion total)
- Leveraging DNE3 with a max-inherit-rr of 10; working decently well with ~2.3 billion inodes on the FS

[root@cn05	57 ~]#	lfs	df -i	/work	l gre	o MDT	l awk	'{print	\$5}'	l sort	-n u	niq -c
7 20)%											
13 21	L%											
7 22	2%											
4 23	3%											
9 24	1%											
2 25	5%											
3 26	5%											
1 27	7%											
1 28	3%											
1 33	3%											


Versity S₃ Gateway + Lustre

- The S3 protocol is almost a first-class citizen within our infrastructure
- Gaining popularity in a variety of use cases
 - Hosting and sharing of datasets for science gateways
 - Data transmission from remote data collection systems (eg. ag research)
 - Shared training datasets for AI pipelines
 - Integration with data backup and data movement tools


Versity S3 Gateway + Lustre

- Co-deployed with Globus on our DTN nodes for Taiga
- Allocations can file requests for S3 endpoints in front of parts/the whole of their allocation
 - Endpoints can be read/write or read-only
- Currently orchestrated via Ansible and systemd unit files/services

Versity S₃ Gateway + Lustre

- A lot of active development around this service for us to scale it for broader access; multiple projects underway:
 - Orchestration via Kubernetes
 - User self-service key changes
 - More fine-grained access controls
 - Tie ins to allocation provisioning
- Plan to share as much of the management framework with the community as we can

Questions?

Email: malone12@illinois.edu

National Center for Supercomputing Applications

UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN