
LFSCK4 Landing milestone
Patches to enhance the performance of the previous LFSCK phases were landed over a period of
approximately six months with the final outstanding patch landing on May 1st, 2015. The
complete list of patches created by Intel and their commitment into the Lustre Master is recorded
below.

9ce1fdd LU-1452 scrub: OI scrub skips uninitialized groups

2c5b57c LU-1453 scrub: auto trigger OI scrub more flexible

2d3d452 LU-1453 scrub: rename confused name full_scrub_speed

81be387 LU-5682 lfsck: optimize ldlm lock used by LFSCK

0f48753 LU-6177 lfsck: calculate the phase2 time correctly

ad40fea LU-6350 lfsck: lock object based on prediction for bad linkEA

f3ea0ce LU-6351 lfsck: check object existence before using it

5b3eef2 LU-6343 lfsck: locate object only when necessary

e6cb857 LU-6322 lfsck: show start/complete time directly

e9a6c24 LU-6317 lfsck: NOT count the objects repeatedly

d381825 LU-6316 lfsck: skip dot name entry

LFSCK4 Performance Demonstration
Milestone
LFSCK 4: Performance has successfully completed both functional Acceptance and Performance
tests. The performance results recorded herein illustrate performance expectations are exceeded
during online operation and under load. In addition, LFSCK 4 has been shown to meet or exceed
expectations running in a multiple MDT environment.

Demonstration on OpenSFS test cluster
This series of tests is intended to demonstrate the performance enhancements delivered as part of
the LFSCK 4 project. No new functionality is included in this project and Correctness Test
Coverage is included to illustrate no regressions are present. This demonstration plan compares
LFSCK 3 and LFSCK 4 performance.

Correctness Test Coverage
The sanity-lfsck.sh and sanity-scrub.sh scripts are standard review tests that will be run and
recorded. All previous LFSCK functionality is also tested with these scripts. For the specific case
of MDT-MDT consistency, the test cases are:

• test 2e: The namespace LFSCK can detect inconsistent remote MDT-object's linkEA and
repair it.

• test 6a: LFSCK can resume from the last checkpoint which is at the first-stage scanning.
• test 6b: LFSCK can resume from the last checkpoint which is at the second-stage

scanning.
• test 7a: Non-stopped LFSCK can auto resume (the first-stage scanning) after the MDS

restart.
• test 7b: Non-stopped LFSCK can auto resume (the second-stage scanning) after the MDS

restart.
• test 9a: LFSCK speed is controllable during the first-stage scanning.
• test 9b: LFSCK speed is controllable during the second-stage scanning.
• test 10: During the LFSCK check/repair system inconsistency, the client can still access

the system normally.
• test 22a: Repair unmatched name entry and MDT-object pairs (1). The parent_A

references the child directory via some name entry, but the child directory back
references another parent_B via its ".." name entry. The parent_B does not exist. Then the
namespace LFSCK will repair the child directory's ".." name entry to reference the
parent_A.

• test 22b: Repair unmatched name entry and MDT-object pairs (2). The parent_A
references the child directory via the name entry_B, but the child directory back
references another parent_C via its ".." name entry. The parent_C exists, but there is no
the name entry_B under the parent_C. Then the namespace LFSCK will repair the child
directory's ".." name entry and its linkEA to reference the parent_A.

• test 23a: Repair dangling name entry (1). The name entry is there, but the MDT-object
for such name entry does not exist. The namespace LFSCK should find out and repair the
inconsistency as required.

• test 23b: Repair dangling name entry (2). The object_A has multiple hard links, one of
them corresponding to the name entry_B. But there is something wrong for the
name entry_B and cause entry_B to references non-exist object_C. During the first-stage
scanning, the LFSCK will think the entry_B as dangling, and re-create the lost object_C.
When the LFSCK comes to the second-stage scanning, it will find that the former re-
creating object_C is not proper, and will try to replace the object_C with the real
object_A.

• test 23c: Repair dangling name entry (3). The object_A has multiple hard links, one of
them corresponding to the name entry_B. But there is something wrong for the
name entry_B and cause entry_B to references non-exist object_C. During the first-stage
scanning, the LFSCK will think the entry_B as dangling, and re-create the lost object_C.

And then others modified the re-created object_C. When the LFSCK comes to
the second-stage scanning, it will find that the former re-creating object_C maybe wrong
and try to replace the object_C with the real object_A. But because object_C has been
modified, so the LFSCK should NOT replace it to keep the data.

• test 24: Repair multiple-referenced name entry. Two MDT-objects back reference the
same name entry via each own linkEA entry, but the name entry only references
one MDT-object. The namespace LFSCK will remove the linkEA entry for the MDT-
object that is not recognised. If such MDT-object has no other linkEA entry after the
removing, then the LFSCK will add it as orphan under the .lustre/lost+found/MDTxxxx/.

• test 25: Repair invalid file type. The file type in the name entry does not match the file
type claimed by the referenced object. The LFSCK will update the file type in the name
entry.

• test 26a: Repair orphan MDT-object (1). The local name entry (back referenced by the
MDT-object) is lost. The namespace LFSCK will add the missing local name entry
back to the normal namespace.

• test 26b: Repair orphan MDT-object (2). The remote name entry (back referenced by the
MDT-object) is lost. The namespace LFSCK will add the missing remote name entry
back to the normal namespace.

• test 27a: Recreate the lost parent directory (1). The local parent (referenced by the MDT-
object linkEA) is lost. The namespace LFSCK will re-create the lost parent as orphan.

• test 27b: Recreate the lost parent directory (2). The remote parent (referenced by the
MDT-object linkEA) is lost. The namespace LFSCK will re-create the lost parent as
orphan.

• test 29a: Repair invalid nlink count (1). The object's nlink attribute is larger than the
object's known name entries count. The LFSCK will repair the object's nlink attribute to
match the known name entries count.

• test 29b: Repair invalid nlink count (2). The object's nlink attribute is smaller than the
object's known name entries count. The LFSCK will repair the object's nlink attribute to
match the known name entries count.

• test 29c: Repair invalid nlink count (3). There are too many hard links to the object, and
exceeds the object's linkEA limitation, as to NOT all the known name entries will be
recorded in the linkEA. Under such case, the LFSCK should skip the nlink verification
for this object.

• test 30: Recover the orphans from backend /lost+found. The namespace LFSCK will
move the orphans from backend /lost+found directory (that is only valid for ldiskfs based
backend) to normal client visible namespace or to the global visible
./lustre/lost+found/MDTxxxx/ directory.

• test 31a: Repair invalid name hash for striped directory (1). For the name entry under a
striped directory, if the name hash does not match the shard (the case that some name
entry should be inserted into other non-first shard, but inserted into the first shard by
wrong), then the LFSCK will repair the bad name entry.

• test 31b: Repair invalid name hash for striped directory (2). For the name entry under a
striped directory, if the name hash does not match the shard (the case that some name
entry should be inserted into other non-second shard, but inserted into the second shard
by wrong), then the LFSCK will repair the bad name entry.

• test 31c: Re-generate the lost master LMV EA for striped directory. For some reason, the
master MDT-object of the striped directory may lost its master LMV EA. If nobody
created files under the master directly after the master LMV EA lost, then the
LFSCK should re-generate the master LMV EA.

• test 31d: Set broken striped directory (modified after broken) as read-only. For some
reason, the master MDT-object of the striped directory may lost its master LMV EA. If
somebody created files under the master directly after the master LMV EA lost, then the
LFSCK should NOT re-generate the master LMV EA, instead, it should change the
broken striped directory as read-only to prevent further damage.

• test 31e: Re-generate the lost slave LMV EA for striped directory (1). For some reason,
the first slave MDT-object of the striped directory (that resides on the same MDT as the
master MDT-object) lost its slave LMV EA. The LFSCK should re-generate the slave
LMV EA.

• test 31f: Re-generate the lost slave LMV EA for striped directory (2). For some reason,
the non-first slave MDT-object of the striped directory (that resides on different MDT as
the master MDT-object) lost its slave LMV EA. The LFSCK should re-generate the slave
LMV EA.

• test 31g: Repair the corrupted slave LMV EA. For some reason, the stripe index in the
slave LMV EA is corrupted. The LFSCK should repair the slave LMV EA.

• test 31h: Repair the corrupted shard's name entry. For some reason, the shard's name
entry in the striped directory may be corrupted. The LFSCK should repair the bad shard's
name entry.

Performance Test Context
All tests require a populated filesystem in order to have something to scan. The filesystem will
be created and populated with the following set of files: there are M MDTs, and for each MDT,
there are N sub-roots, each sub-root contains 100K objects, including:

1. 78% (0-striped) regular files under the sub-root;
2. 3% local sub-dirs and each contains 5 (0-striped) regular files;
3. 0.4% 2-linked objects;
4. 0.3% remote sub-dirs and each contains 4 (0-striped) regular files;
5. 0.3% 2-striped sub-dirs (0.3% master objects plus 0.6% slave objects) and each contains

4 (0-striped) regular files with "all_char" stripe_hash.

Run namespace lfsck (with or without repairing) to scan the test unit without other system load.
It will test the cases of M=2,4, 6, 8, and N=20,40, 60, 80, ...

Performance Test Coverage
The following scenarios will be tested:

1. Performance comparison between LFSCK 3 and LFSCK 4 running against
multiple MDTs without inconsistencies.

This will provide a control benchmark for LFSCK 3 scanning. LFSCK 3 includes support for
DNE striped and remote directories consistency checking (also known as MDT-MDT
consistency checking). This test will ensure that the scanning rate across multiple MDTs within
striped directories is consistent with expectations. The aggregate LFSCK scanning performance
should scale as additional MDTs with allocated objects are added to the filesystem.

2. Performance comparison between LFSCK 3 and LFSCK 4 running against
multiple MDTs with inconsistencies (lost linkEA).

This test will scan the full filesystem on all MDTs to look for inconsistencies in the filesystem
namespace, including MDT-MDT inconsistencies, as is done in test #1. The intent of this test is
to measure performance when the filesystem needs to repair a large number of inconsistencies
and update each modified file on disk, in comparison to the "clean" case of test #1 which is a
read-only test.

In this case, the filesystem has been intentionally corrupted during the filesystem population step
by not storing the link xattr on each file in the filesystem using the
OBD_FAIL_LFSCK_NO_LINKEA fault injection hook. This type of inconsistency could also happen
for filesystems upgraded from Lustre 1.8. The link xattr stores the backpointer from each inode
to the directory name entry/entries for each link to the file. During scanning, the LFSCK
traversal will check for each name entry in each directory whether a corresponding name entry
exists in the link xattr. When LFSCK finds that no entry is present in the link xattr for each
directory entry, the link xattr is updated with a new { parent FID, filename } entry for that
directory entry. On files with multiple hard links there will be one entry in the link xattr for
each link, subject to space availability in the link xattr.

3. Performance comparison between LFSCK 3 and LFSCK 4 running with a
simultaneous small file create workload on multiple MDTs without
inconsistencies.

This test will measure the additional load online LFSCK 3 imposes on the MDS during a
metadata-intensive workload. Online LFSCK includes a feature that allows the scanning rate to
be limited. This feature is intended to enable an administrator to 'dial-back' the LFSCK scanning
speed in a production environment to reduce or avoid impact on client metadata performance.
This test provides a sweep of scanning rate measurements to give an administrator a feel for the
performance change expected by choosing to reduce (or increase) the LFSCK scanning rate.

Results of the test
Each of the benchmark scenarios was run on the OpenSFS Test Cluster.

145106

287749

425642

558811

210405

400772

611176

812472

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

2 4 6 8

lfs
ck

_n
am

es
pa

ce
 p

er
fo

rm
an

ce

(M
DT

-o
bj

ec
ts

/s
ec

)

MDT count

Test 1: lfsck_namespace routine check performance
for DNE 20 x 100K MDT-objects

LFSCK3

LFSCK4

12358 15642

30713
36647

25070

59269

87048

129519

0

20000

40000

60000

80000

100000

120000

140000

2 4 6 8lfs
ck

_n
am

es
pa

ce
 p

er
fo

rm
an

ce

(M
DT

-o
bj

ec
ts

/s
ec

)

MDT count

Test 2: lfsck_namespace repair linkEA performance
for DNE 20 x 100K MDT-objects

LFSCK3

LFSCK4

82542

161848

228847

313201

175642

312273

489720

694912

0

100000

200000

300000

400000

500000

600000

700000

800000

2 4 6 8

lfs
ck

_n
am

es
pa

ce
 p

er
fo

rm
an

ce

(M
DT

-o
bj

ec
ts

/s
ec

)

MDT count

Test 3: lfsck_namespace repair FID-in-dirent
performance for DNE 20 x 100K MDT-objects

LFSCK3

LFSCK4

