
Clustered Metadata Design

06/15/09 Copyright 2009 Sun Microsystems - Sun and Cray Confidential Page 1 of 22

06/15/09 Copyright 2009 Sun Microsystems - Sun and Cray Confidential Page 2 of 22

Author Date Description of Document Change Client Approval
By

Client
Approval Date

Wang Di 04/27/09 Cluster Metadata HLD (version 1)

WangDi 06/01/09 Cluster Metadata HLD (version 2)

06/15/09 JKD - Copyright notice

06/15/09 Copyright 2009 Sun Microsystems - Sun and Cray Confidential Page 3 of 22

06/15/09 Copyright 2009 Sun Microsystems - Sun and Cray Confidential Page 4 of 22

1 Introduction

Allowing only a single Metadata Target (MDT) in a filesystem means that Lustre
metadata operations can be processed only as quickly as a single server and its
backing filesystem can manage. To date, this has not been a critical limitation
and it has in the past been addressed by selecting an MDS node and MDT
storage that are capable of handling the required metadata load. However, as a
Lustre filesystem grows, a single MDS+MDT becomes a performance bottleneck
and constraint on the total number of files in the filesystem.

It is not possible to cost-effectively scale a single MDS node to meet the
demands of the largest compute systems. Increasing the amount of RAM,
number of CPUs, number of network and disk interconnects in a single MDS
node increases the cost of the system disproportionately to the amount of
incremental performance gained. Allowing Lustre to increase the metadata
performance by adding lower-cost independent MDS nodes and independent
MDT filesystems ensures that system architects can scale the metadata
performance in a linear manner, similar to the way Lustre scales the IO
performance by adding OSSes.

The metadata performance limit is being addressed by the addition of Clustered
Metadata Server (CMD) functionality to Lustre. With CMD functionality, multiple
MDSes provide a single filesystem's namespace jointly, storing the directory and
file metadata on a set of MDTs.

Clustered Metadata (CMD) means there are multiple active MDS servers in one
Lustre file system, the MDS workload can be shared among several servers, so
that the metadata performance will be significantly improved. For the HPCS
project, some requirements are hard or even impossible to achieve without CMD.
For example one requirement is that the system be able to create 40,000 files
per second, which would be difficult to achieve with a single MDS. Clustered
Metadata is essential for the HPCS project.

Although CMD will improve the performance and scalability of Lustre, it also
brings some difficulties. The most complex one is recovery. In CMD, one
metadata operation may need to update several different MDSs. To maintain the
consistency of the filesystem, the update must be atomic. If the update on one
MDS fails, all other updates must be rolled back to their original states.
Unfortunately, the current recovery model does not support this kind of recovery,
which can only keeps the metadata operations atomic in a single MDS. This

06/15/09 Copyright 2009 Sun Microsystems - Sun and Cray Confidential Page 5 of 22

recovery problem will be ultimately fixed by global epochs, which will not be
discussed in this design document. Instead this document will propose another
way to fix this problem for the short term, and the detail will be discussed in
section 4.2. Clustered metadata will be released in two phases. In the first phase,
CMD will be released with synchronous distributed operations. In the second
phase, global epochs will be brought into the infrastructure and fully support CMD
recovery. This document will only discuss CMD in the first phase.

2 Requirements

The requirements in the first phase include:

1. CMD should show MDS scalability compared with a single MDS. The
HPCS program has the following objectives for Metadata scalability and
performance:

• A single process must be able to open 100,000 files simultaneously.

• The file system be able to hold a trillion files.

• A directory must be able to contain 10 billion files.

• Able to create 40,000 files per second in the file system.

These objectives can not be satisfied by the current release of the Lustre
system[1](<= 2.0), for example, a single MDS (based on ldiskfs) has an
upper limit of 4 billion files per system and 125 million files per directory,
which are far less than these objectives. Some of these objectives will be
reached by ZFS[2] in Lustre, but requirements such as creating 40,000
files per second and performing an fsck on a Lustre filesystem with 1
trillion files (10^12) in 100 hours, are hard to achieve with single MDS.

2. Any metadata operation that works in a single MDS should also work in a
CMD environment.

3. CMD should be compatible with the previous single MDS version. i.e. a file
system with a single MDS can be upgraded to CMD smoothly.

4. Although phase 1 recovery will not be fully functional, it will meet the
[1] http://wiki.lustre.org/index.php/Lustre_FAQ
[2] http://arch.lustre.org/index.php?title=Architecture_ZFS_for_Lustre

06/15/09 Copyright 2009 Sun Microsystems - Sun and Cray Confidential Page 6 of 22

following requirements;

▪ The effects of any failure are limited to aborting operations in
progress. i.e. no additional damage.

▪ The namespace remains usable after initial recovery. i.e. no
dangling links, disconnected subtrees. There maybe some
space leakage after recovery, please refer to section 4.2 for
details. And these space leakage will be resolved by online
lfsck, which is discussed in another HLD.

▪ The namespace is restored to full consistency after all recovery
has completed. (i.e. fsck cleans up any problems leftover from
recovery.

2.1 Definitions

Object: used in the this document to indicate files or directories.

MDT: the storage (filesystem) on an MDS node. There may be multiple MDTs on
a single MDS node.

Master/Slave MDT: In CMD, metadata operations might be executed in several
MDSs (MDTs). The client first sends a request to one MDT, which is called the
Master MDT in this operation (please see FID section in 2.1 about how clients
choose a Master MDT for each operation), then the Master MDT distributes the
request to other MDTs if necessary, the receiving MDTs are slave MDTs. How
master MDTs distribute metadata operations will be explained in section 4.2.

06/15/09 Copyright 2009 Sun Microsystems - Sun and Cray Confidential Page 7 of 22

3 Functional specification
3.1 General process

3.1.1 Architecture description

3.1.2 New modules

The MDS server stack is totally reconstructed for CMD. The MDT[1] will unpack
requests and deal with lock and recovery issues. The CMM manages inter-
connection between MDSs. MDD and OSD are local modules, MDD is the
metadata layer; OSD is the object storage layer, which exports the object API for
the MDD, for example create/unlink object, to help MDD finish metadata
operations. The LMV is added on the client side to help manage connections
between client and other MDSs.

3.1.3 FID

In previous Lustre version(<2.0), because there are is only one active
MDS(MDT), a client does not need to know which MDS(MDT) it should access
to get the required information for an object, the ldiskfs inode number on the MDT
is actually used as the identification for those objects. With CMD, client also
needs to know which MDT it should go to for accessing the object, so the MDT
inode number is not enough for the identification any more. FID is introduced
into Lustre in 2.0 to resolve this problem. A FID is a three item data structure,

[1]This MDT does not mean the filesystem. It is actually one of the service level. Confusing name.

06/15/09 Copyright 2009 Sun Microsystems - Sun and Cray Confidential Page 8 of 22

llite

Client metadata stack

LMV

mdcmdc

MDT

CMM

mdd
mdc

Connect to
another MDS.
Since each pair
of MDS might
communicate
in CMD. On
MDS, it has
MDCs to all
other MDSs

osd
Local meta storage

Other MDS

...mdc

{f_seq, f_oid, f_ver}, in which f_seq is 64 bit, f_oid is 32 bit, f_ver is 32 bit, and it
is a cluster-wide unique identifier for a file or a directory. A FID can actually be
used everywhere in Lustre, for example files/directories on MDT, data objects on
OST and llog objects on MDT etc. But currently FIDs is only used to identify files
and directories on MDT.

When a client tries to locate an object by the FID, it first looks the object up in a
FID location database (FLD) to get the MDT index which indicates on which MDT
the object resides, and then gets the object by looking it up in the object index
table on the appropriate MDT.

1. The FLD used in the first lookup is indexed by the FID sequence
number(f_seq), i.e. the objects with the same sequence number will reside in
the same MDT. The FLD is stored in the root MDT[1][2], but each node has its
own local cache. If it can not get an MDT location from the local cache, it goes
to the root MDT, and gets the location information there and updates the local
cache at the same time. Note: once an object is created, it will not move to
another MDT, meaning its FID entry will not be changed during the life of an
object. This also makes the implementation of FLD cache easy. The object
index table used in the second lookup is for mapping the FID to the object,
and it is currently implemented by the ldiskfs htree structure, but with a higher
tree level.

With FIDs, when creating a new object, the client chooses an MDT and asks it to
allocate a FID for the object, then do the following creation with the FID. For
efficiency, a client usually pre-allocates some FIDs and caches them locally, so it
does not need to request FIDs from servers every time. When recovery is
occuring between clients and servers, these unused, pre-allocated FIDs in cache
will be thrown away and clients will request new FIDs from servers, i.e. the server
will not recovery these preallocated FIDs during failover, which is different with
the preallocated id between an MDS and OST.

3.2 Scalability

3.2.1 Single client operation

Even though there are multiple metadata servers, metadata operations are still
handled in partially serialized fashion, i.e. the client only sends the request to one
MDT each time. And furthermore, a master MDT may someimes need to send

[1]Just as with OSTs, each MDS has an index in CMD. The MDS with 0 index is called root MDS.
[2]The FLD may be mirrored across MDTs in a future release.

06/15/09 Copyright 2009 Sun Microsystems - Sun and Cray Confidential Page 9 of 22

requests to other MDTs. Compared with single MDS, metadata operations in
CMD need more RPCs and disk operations. But, in certain scenarios, for
example creating large amount of files , multiple severs can share te workload,
and clients can expect quicker responses from MDTs.

3.2.2 Multiple client operations.

The throughput of metadata operation should be improved for multiple client
operations.

3.2.3 Multiple client access same directory

With CMD, directories also have layout information (setting stripe), similar to files.
Multi-stripe directories will be split into several parts and each of them will reside
on different MDTs. If multiple clients access this directory at the same time,
different clients can access different MDSs (MDTs), and the server load will be
shared.

3.2.4 Multiple client access different directory

When multiple clients access different directories at the same time, these
directories are usually on different MDTs, clients access different servers, and the
server load will also be shared by these MDSs(MDTs).

3.2.5 MDS load imbalance

Currently the directory layout information can not be changed dynamically. If a
large number of clients access one directory at the same time, or access the
same part of the directory, the load on that MDS might be quite high. This could
be resolved by re-stripeing the directory dynamically, i.e. the entries of that
directory can be dynamically relocated to other MDSs, but it depends on the
directory layout lock, which will not be implemented in this project. Dynamic
restreing of directories will not be supported in the initial release of CMD.

3.3 Recovery

The long term recovery solution for clustered metadata recovery will be global
epochs, which will not released in phase 1. Instead those metadata operations
that span multiple MDSs(MDTs) will be synchronous to avoid recovery once the

06/15/09 Copyright 2009 Sun Microsystems - Sun and Cray Confidential Page 10 of 22

system crashes, this might impact the metadata performance. The detailed
algorithms will be discussed in section 5.2.

3.4 Compatibility

This section addresses compatibility and differences betweena file system with a
single MDS and one using CMD.

3.4.1 Upgrading to CMD

When upgrading from a single MDS (MDT) to CMD, the required steps will only
be to: mkfs the new MDTs and mount the new MDTs. Clients will be notified that
the new MDS(MDT) have been added to the system, and will start to create new
objects on these MDTs. The addition of MDTs to a CMD file system is handled
the same way.

Because in older versions of Lustre (prior to 2.0) directories do not have stripe
information, after upgrading to CMD, the stripe count of the existing directories
will be 1.

3.4.2 Disk format compatibility

In 2.0, with a single MDS, the FID is actually stored in the inode EA. A client
retrieves the FID from the EA after it gets the object. But for CMD, the FID must
be stored in the name entry, in this case the name entry and inodes may not be
in the same MDT(cross-ref object). CMD might either retrieve the FID from the
EA(for old objects) or from the name entry(for newly created objects for CMD).

4 Use cases

4.1 Metadata operations

For clients, the metadata operations remain the same as for a single MDS. But
related tools will be provided or changed for CMD.

1. lfs find show the file location information, including which MDT the file
resides on.

2. lfs dirstripe can be used to set directory stripe information.

4.2 Scalability

06/15/09 Copyright 2009 Sun Microsystems - Sun and Cray Confidential Page 11 of 22

An HPCS project goal is to be able to place 10 billion files in one directory. These
files should be put into a multi-stripe directory. Suppose the stripe_count is N,
then the directory entries will be distributed over N MDSs(MDTs). HPCS also
desires that the system be able to create 40000 files per second, which can only
be satisfied with a multi-stripe directory.

4.3 Recovery

To facilitate recovery, in the initial releases of CMD, the cross-MDT operations
will be done synchronously. During a recovery, when the master MDT receives
the resend and replay requests from the client it only checks the status locally
and determines whether it needs to redo the requests. The Phase 1 recovery
mechanism will at worst leak a small amount of space after an MDS failure.

5 Logic implementation

5.1 Scalability

5.1.1 Namespace displacement

To achieve scalability of CMD, inodes (files and directories) should be spread
across all MDSs(MDTs) as evenly as possible. The Phase one placement policy
is to only distribute directories, i.e. files are always on the same MDT as their
parents. For a new directory, the MDT will be chosen based on a hash of the
directory name being created. The available space of each MDT is also a factor.
The rules are:

1. The MDT, whose available space is largest, will be preferred.

2. If the available space is similar for each MDT, it will choose an MDT using the
following rule:

 a. If it is a single-stripe (non-striped) directory.

MDT_idx = (summation of all the character's value) mod (MDT_count).

 b. If it is a multi-stripe (striped directory, see 4.1.2) directory.

 The inode will be placed in the same MDT as the name entry.

These are the default striping rules. The user can define alternative policy to

06/15/09 Copyright 2009 Sun Microsystems - Sun and Cray Confidential Page 12 of 22

specify where to put the inode instead of using the above policy. For example
users can set a policy that new child directories stay on the same MDT as their
parent.

Since the directory is placed on a new MDT at the time of creation, it might be in
a different MDT than its name-entry, this is called across-ref directory. Note:
because of this separation, it needs two RPCs to lookup a cross-ref directory.

 1. Go to the name entry MDT(Master MDT), get the FID.

 2. Go to the object MDT(slave MDT), get the real attributes using the FID.

We can see that there are some performance penalties to accessing a cross-ref
directory compared to a normal directory.

5.1.2 Striped directory

Another way to distribute the directory is to set the stripe information for the
directory, which will split the directory across multiple MDTs.

Stripe information for a directory is similar to file stripe information, but there is no
stripe_size. Only a stripe_count and stripe_index. The whole name space of the
stripe directory will be split into several sections according to hash value. For
example, if the stripe count of the directory is N and hash range is 0 to
MAX_HASH, then first MDT will keep records with hashes [0 ... MAX_HASH / N -
1], second MDT with hashes [MAX_HASH / N ... 2 * MAX_HASH / N – 1] and so
on. The hash value of each entry is computed with the Tea hash algorithm[1] and
the input cookie is the name of the entry. Note: a different directory may have a
different hash algorithm, so the hash function will be part of the directory stripe
information.

Ideally, the directory should be re-striped dynamically, for example, when a single
-stripe directory size reaches an upper limit, it can be re-striped to a multiple
stripe directory, but this depends on the directory layout lock. Dynamic directory
re-striping will not be implemented in the initial phase of CMD.

5.2 Metadata operations

[1] http://en.wikipedia.org/wiki/Tiny_Encryption_Algorithm Given weakness of the TEA hash, we
might consider some other algorithm like md4.

06/15/09 Copyright 2009 Sun Microsystems - Sun and Cray Confidential Page 13 of 22

http://en.wikipedia.org/wiki/Tiny_Encryption_Algorithm

Metadata operations in CMD are quite different than metadata operations in a
system with a single MDS. The three main differences are:

1. The client needs to choose the right MDT to handle the requests by
checking the FLD.

2. A singel operation might involve more than one MDT. The Master MDT
might send the operation to a slave MDT. As we discussed in section 3.3,
this kind of request between MDTs will be ordered and partially
synchronous to ensure that in the case of multi-node failures at worst a
single reference on the inode will be leaked. This might lead to some files
not releasing, but the namespace is usable after the recovery.

3. During the recovery process, when the master MDT gets replay or resend
requests from clients, it will first check the local status to know whether
this operation has been completed or not. If it has not been, the master
MDT will redo the operation. Although the RPC between master and slave
is synchronous, the master MDT does not know whether the resend(not
replay) request has been done or not in theslave MDT, because the
master MDT might crash after it sent out the RPC to the slave MDT. This
can be resolved by adding the request xid (from client to the master) to the
last_rcvd file. When master MDT sends the RPC to slave MDT, the xid of
the request (from client to master) will be included in the RPC, and the
slave MDT will add the xid to the corresponding entry of last_rcvd file.
Then the slave MDT will know whether the request(from the client) has
been processed or not during the recovery.

The following describes the problems(leaked inodes) that might occur with this
simple synchronized recovery and how they are addressed:

5.2.1 Open/Create

1. The client chooses one MDT and allocates a FID for the new file. If the parent
is a multi-stripe directory, it will choose an MDT according to the rule discussed in
5.1.2. If the parent is a single-stripe directory, the file will be created in the same
MDT as its parent.

2. The client sends the open/create request to the master MDT. If the parent is a
multi-stripe directory, the master MDT is determined using the rule in 5.1.2. If it is
not, the parent directory resides on the master MDT. Then, in the master MDT,
the name entry will be inserted into the directory and the file will be created.
Because all updates are occurring on the Master MDT, the replay and resend

06/15/09 Copyright 2009 Sun Microsystems - Sun and Cray Confidential Page 14 of 22

request handling will be the same as with a single MDT.

5.2.2 FID update

Another important topic regarding create is FLD consistency. Once the FID is
allocated, and its object is created and committed to disk, the system must make
sure the corresponding FID location information is also stable. As discussed in
section 3.1, there are two kinds of FID location information.

1. The object index is used for mapping the FID to the real object inside
the MDT. Its update will be included in the same transaction as the object
create. So its update will be synchronous with the object create.

2. The FLD is used for mapping the FID to the MDT index. The FLD is
updated in the root MDT when the client pre-allocates the FID. And the
update is outside of the transaction of the following create, even on a
different MDT. So the FLD updates will be a synchronous operation.
However, since the FLD is expected to change very rarely, this will not
have a noticable performance impact.

5.2.3 Mkdir

For mkdir the following occurs:

1. The client allocates a FID for the object. If the parent is not a multi-stripe
directory, it will choose an MDT according to the rule discussed in 5.1.1. If the
parent is multi-stripe directory, it will choose an MDT using the rule in 5.1.2.

2. The client sends the mkdir request to the master MDT, where the parent
resides. The master MDT checks whether the FID is local or not. If it is not,
the master MDT sends the create request to the slave MDT and creates the
object synchronously. After that, it will insert the name entry for the object into
the directory. Two notes here,

a) The create request between the Master MDT and the slave MDT is
synchronous,

b) The name entry insertion update needs to be committed to disk before
any further creation under the new directory in case these creations might
include any synchronization operations.

06/15/09 Copyright 2009 Sun Microsystems - Sun and Cray Confidential Page 15 of 22

When the server receives resend mkdir requests, it will check whether the name
entry exists. If it does, then the server does not need to do any updates, since
the synchronize process will make sure the object on the slave MDT exists. If it
does not, it will try to recreate the object on the MDT. On a slave MDT it will know
whether the request has been done by checking last_rcvd.

For areplay request, it will first check whether the name entry exists, if the source
entry (A) is still in dir_A, the server will only insert the name entry then return,
since the object must exists because of the synchronization between master
MDT and slave MDT. If the entry exists, the server will do nothing and return.

5.2.4 Link

For Link operations:

1. The client sends link requests to the Master MDT. If the parent is a multi-
stripe directory, it chooses the master MDT by the name hash value according
to 5.1.2. If the parent is not a multi-stripe directory, the master MDT is the
MDT where the parent resides.

2. The master MDT will check whether the FID is local or not. If it is not, the
master MDT will send the request to the slave MDT to increase the reference
count of the object, which is synchronous. Then insert the name entry of
object.

When the server receieves resend link requests, it will check whether the name
exists. If it does, the server does not need do any updates for the operation. If it
does not, it will redo the link. On a slave MDT, it will know whether the request
has been done by checking last_rcvd.

For a replay request, just as with mkdir, it will know whether the request has been
processed by checking by the name entry in the master MDT.

5.2.5 Unlink

For unlink operations:

1.The client sends unlink requests to the Master MDT. If the parent is a mutli-
stripe directory, it chooses the master MDT by the name hash value according to

06/15/09 Copyright 2009 Sun Microsystems - Sun and Cray Confidential Page 16 of 22

5.1.2. If it is not, the master MDT is the MDT where the parent resides.

2.If the object is local, the master MDT can do an asynchronous unlink just as
occurs with a single MDS. If it is a remote object, the Master MDT first deletes
the name entry synchronously, then decreasesw the refcount of the object on
slave MDT asynchronously.

When the server receives resend unlink requests, it will check whether the entry
exists. If it does, the server will redo the unlink. If it does not, it will not do any
updates and return. On a slave MDT, it will know whether the request has been
done by checking last_rcvd.

5.2.6 Rename

Since rename will involve more objects (four objects) and steps, and those
objects can be anywhere over the cluster, rename is more complicated than other
operations. Rename actually includes two phases: link and unlink. Basically, the
link process is synchronous, while the unlink process is asynchronous. Since
rename for a directory and a file are quite different, we will describe them
separately. To describe things simply, the following description will not mention
whether the operations should be done locally or remote. If it is remote (not in the
master MDT), it means the request need to be sent to one of its slave MDTs.

5.2.6.1 Rename regular file (rename dir_A/A dir_B/B)

MDT1(master MDT) holds dir_A. MDT2 holds A, MDT3 holds dir_B, MDT4 holds
B.

1. Client sends rename requests to the master MDT1

2. MDT1 increases the refcount of A synchronously.

3. MDT3 replaces entry B with entry A synchronously. If B does not exist, just
add entry A.

4. MDT1 deletes entry A asynchronously.

5. MDT4 decreases the refcount of B asynchronously, if B exists.

6. MDT2 decreases the refcount of A asynchronously.

06/15/09 Copyright 2009 Sun Microsystems - Sun and Cray Confidential Page 17 of 22

5.2.6.2 Rename directory (rename dir_A/A dir_B/B)

MDT1(master MDT) holds dir_A. MDT2 holds A, MDT3 holds dir_B, MDT4 holds
B.

1. Client sends rename requests to the master MDT1.

2. If B exist, MDT4 checks whether there are entries under B, if there are,
rename failed(ENOEMPTY), if there are not, MDT4 increases the link
count of B synchronously.

3. MDT2 increases the refcount of A synchronously.

4. MDT3 replaces entry B with entry A synchronously. If B does not exist, just
add entry A.

5. MDT1 deletes entry A and decrease the link_count of dir_A
asynchronously.

6. MDT2 decrease the refcount of A asynchronously.

7. MDT4 decrease the refcount of B asynchronously.

So basically, rename can be divided into two steps, link and unlink. The link step
is the key to making the filesystem usable , and it must be synchronous in the
current recovery model, while the unlink step can be asynchronous, and the
failure of this step will only cause some leaked inodes. When the server receives
a resend request, it will check whether the source entry(A) exists under dir_B. If it
does not, it will redo the entire rename processes. So, the link process might
happen twice, which will cause:

1. For regular file rename, the refcount of A is increased twice, and it
becomes an orphan object.

2. For directory rename, the refcount of A is increased twice, the link_count
of B is increased twice. So A and dir_B become orphan objects when all of
the directory entries are removed.

06/15/09 Copyright 2009 Sun Microsystems - Sun and Cray Confidential Page 18 of 22

If it does, it will do nothing and return. So, if the unlink (asynchronously) failed,
then

1. The refcount of A can not decreased. A and B will refer to the same object.

2. The link_count of dir_A might not decreased. dir_A becomes anorphan
object.

During the replay process, the server does not need to do anything, because
replay request indicates the synchronous step s (step 1, 2,3,4) has been
executed on the server. But since it does not check whether the unlink steps
succeeded, some leaked inodes might be left after recovery. Note: Because the
rename process is quite complicated compared with other operations we may not
try to enhance recovery as we did for other operations (checking last_rcvd on
slave MDT), so some leaked inodes might be left after failover.

5.2.7 Rename check

Rename check is used to avoid rename recursion. i.e. the source can not be an
ancestor of the target, which is not required if the source and target are regular
files. The checking is actually implemented by finding the common parent of the
source and target, which is also needed in the following rename lock process. If
the common parent is not the source, it means the source is the parent of the
target, so is_subdir check succeed, otherwise it is failed. We can always find the
parent by lookup .. entry.

5.2.8 Rename lock

In the CMD implementation, the rename check process will be protected by a
single global lock which will serialize all cross-directory renames to ensure the
rename check is valid. This global rename lock is only used to protect the
rename check process, and it is actually not needed after it acquires all of the
rename objects lock (ldlm lock), so it can be dropped during the actual rename
process. Note: this global rename lock does impact rename performance, and we
considered implementing an FS hierarchy lock, instead of a global lock. But it
requires much more complicated lock mechanisms. Since rename is usually a
rare operation iwe chose to use global rename lock.

5.3 Compatibility

To upgrade a file system with a single MDS to CMD smoothly, CMD also needs
to understand the disk format of single MDS(MDT) systems, so it will not be

06/15/09 Copyright 2009 Sun Microsystems - Sun and Cray Confidential Page 19 of 22

necessary to reformat the filesystem when upgrading from a single MDS to CMD.

The major difference between the single MDS disk format and CMD disk format
is the directory entry. As discussed in section 3, CMD will store the FID in the
name entry. Single MDSs store the FID in the inode EA.

The FID will be appended after the name. Name_len will be extended and the
name will be NUL terminated to include the FID and a new file_type will be added
to indicate there is a FID after the name.

6 State management

6.1 Scalability & performance

While there is some overhead in CMD compared to a single active metadata
server, the large majority of metadata operations such as file creates, attribute
lookups, and unlinks will be performed by the single MDS that manages a
particular inode. Performance for most individual operations is comparable to a
system with a single MDS, but the individual operations can be performed in
parallel on multiple MDSes so the aggregate metadata performance is expected
to scale in a nearly linear manner with the number of MDSes in the filesystem.

A limited number of less frequently performed operations, such as some sub-
directory creation, cross-MDT rename, and hard-link operations may involve
multiple metadata servers, and will need multiple RPCs to complete. The
number of cross-MDT operations will be actively limited by file creation policy
specified by the user and/or administrator in a similar manner to the striping of
Lustre files today. Individual directories can be split over multiple MDTs to
improve aggregate performance within that directory, but even for split directories
the file creation, lookup, and unlink for specific filenames will normally be
considered local MDT operations and will be completely asynchronous.

6.2 Recovery changes

06/15/09 Copyright 2009 Sun Microsystems - Sun and Cray Confidential Page 20 of 22

Ino(32bits) rec_len(16bits) name_len(8bits) file_type(8bits) name(string) FID(128bits)

 CMD directory entry

Single MDS directory entry

The recovery changes and consequences has been discussed in section 5.2.

6.3 Locking changes

This sections describes the changes to locking with CMD.

6.3.1 Cross-ref object locking

For a cross-ref object, the name entry and the object are in different MDTs. The
name entry is in the master MDT, the object is in a slave MDT. When performing
a lookup of a cross-ref object, it gets a lookup lock from the master MDT and gets
an update lock from the slave MDT. For example, when you do

“ls -l a/b” a is in MDT1, b is in MDT2.

1. Client will get b's lookup lock from MDT1, because b's entry is on
MDT1.

2. Client will get b's update lock from MDT2, because b is on MDT2.

Compared with a single MDT, CMD also separates the lock of a single object,
which also brings some differences.

In a single MDT, the namespace and permissions (uid/gid/acl) are protected by a
lookup lock, and all other inode attributes are protected by an update lock. If
some one changes the inode's permissions, MDS will revoke lthe ookup lock of
the clients, and then clients need to re-acquire the permission from the server.
But with CMD, the permission changes happens in the slave MDS(MDT) where
the object resides, but it only owns the update lock, and the lookup lock can not
be revoked at this time. So in CMD, the permission lock will be split from the
lookup lock and become a new inode bit lock. The slave MDS(MDT) will own the
permission lock, and it can revoke the permission lock on a client when
necessary.

6.3.3 stripe directory locking

For a multi-stripe directory, the master MDT is the MDT which its FID refers to,
the slave MDTs are the MDTs which it will be split across, except the master
MDT. The master MDT owns the lookup lock, and the update lock is owned by all
the master and slave MDTs.

06/15/09 Copyright 2009 Sun Microsystems - Sun and Cray Confidential Page 21 of 22

The inode attributes of a multi-stripe directory will be protected by the update lock
on the master MDT. But the entries of a multi-stripe directory will be protected by
the update lock on all master and slave MDTs, and each MDT will only own the
lock of those entries residing on that MDT. So when a client reads entries, it will
get all the update locks from the MDT where those entries reside. When the MDT
revokes the update lock from the client, it will also only let the client invalidate
those entries residing on that MDT, instead of revalidate all of them. But when
unlinking the multi-stripe directory, it needs to get all the update locks from the
master and slave MDTs.

06/15/09 Copyright 2009 Sun Microsystems - Sun and Cray Confidential Page 22 of 22

	1 Introduction
	2 Requirements
	2.1 Definitions

	3 Functional specification
	3.1 General process
	3.1.1 Architecture description
	3.1.2 New modules
	3.1.3 FID

	3.2 Scalability
	3.2.1 Single client operation
	3.2.2 Multiple client operations.
	3.2.3 Multiple client access same directory
	3.2.4 Multiple client access different directory
	3.2.5 MDS load imbalance

	3.3 Recovery
	3.4 Compatibility
	3.4.1 Upgrading to CMD
	3.4.2 Disk format compatibility

	4 Use cases
	4.1 Metadata operations
	4.2 Scalability
	4.3 Recovery

	5 Logic implementation
	5.1 Scalability
	5.1.1 Namespace displacement
	5.1.2 Striped directory

	5.2 Metadata operations
	5.2.1 Open/Create
	5.2.2 FID update
	5.2.3 Mkdir
	5.2.4 Link
	5.2.5 Unlink
	5.2.6 Rename
	5.2.6.1 Rename regular file (rename dir_A/A dir_B/B)
	5.2.6.2 Rename directory (rename dir_A/A dir_B/B)

	5.2.7 Rename check
	5.2.8 Rename lock

	5.3 Compatibility

	6 State management
	6.1 Scalability & performance
	6.2 Recovery changes
	6.3 Locking changes
	6.3.1 Cross-ref object locking
	6.3.3 stripe directory locking

