A Vision of Storage for Exascale Computing

Eric Barton
Fast Forward Storage & IO Project Goals

- Make Exascale storage a tool of the Scientist
 - Tractable data management
 - Comprehensive interaction
 - Move compute to data or data to compute as appropriate

- Overcome today’s IO limits
 - Multi-petabyte datasets
 - Explosive growth of metadata
 - Horizontal scaling & jitter

- Support unprecedented fault tolerance
 - Deterministic interactions with failing hardware & software
 - Fast & scalable recovery
 - Enable multiple redundancy & integrity schemes
Fast Forward I/O Architecture

- Global storage mounted on compute cluster IO nodes and scientist’s workstation
- I/O forwarding from compute to IO nodes
Workflow: Simulation + In-transit Analysis

- Workflow session containing simulation and analysis jobs queued
Workflow: Pre-stage to Burst Buffer

- Pre-stage triggered when BB resources released by previous workflow session
Workflow: Start Session

- Session starts when nodes free
- Previous session may still be persisting data from BB to global storage
Workspace: Dump Timestep

- Simulation computes and dumps timestep
Workflow: In-transit Analysis

- Raw timestep data analysed
- Analysis data saved to BB
- Raw timestep may be discarded
Workflow: Persist to Global Storage

- Analysis output saved to global storage
Workflow: Browse

- Scientist browses simulation output
- Insufficient bandwidth for brute-force query or index build
Workflow: Analysis Shipping

- Ship index build / query to storage cluster
- Full streaming bandwidth available
- Query results returned to workstation
Stackable components

- **Application I/O APIs**
 - Multiple domain-specific API styles & schemas
 - HDF5+extensions & Graph Computation libraries

- **I/O forwarding**
 - Keeps top level APIs on Compute Nodes when IOD runs on the Burst Buffer

- **I/O Dispatcher (IOD)**
 - Impedance match application I/O to storage capabilities
 - Semantic resharding
 - Burst Buffer management

- **DAOS-HA**
 - High-availability scalable object storage
 - Follow-on project from Fast Forward

- **DAOS Containers**
 - Virtualized shared-nothing object storage
 - Unpolluted storage system namespace

Other names and brands may be claimed by others
I/O Stack Configurations

Exascale System

Compute Node
- Application
- Query
- Tools
- HDF5/VOL
- POSIX
- I/O Forwarding Client

IO / BB Node
- Analysis Shipping
- I/O Forwarding Server
- IOD
- POSIX
- SSD
- DAOS / Lustre* Client

Storage Server
- Analysis Shipping
- HDF5/VOL
- POSIX
- IOD
- DAOS / Lustre Client
- DAOS / Lustre Server
- SSD
- Disk

Workstation
- Application
- Query
- Tools
- HDF5/VOL
- POSIX
- IOD
- DAOS / Lustre Client

other names and brands may be claimed by others
Ubiquitous NVRAM

- O(1TB) compute node-local storage
- Instant-on
 - 0 power standby
- Load-store byte-granular access
 - Invites Distributed Persistent Memory programming models
 - Order of magnitude larger in-core working sets
- Storage fully leverages fabric

<table>
<thead>
<tr>
<th></th>
<th>Disk</th>
<th>Edge BB</th>
<th>NVRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Checkpoint / Search</td>
<td>1 hour</td>
<td>6 minutes</td>
<td>6 seconds</td>
</tr>
<tr>
<td>Capacity (# datasets)</td>
<td>30</td>
<td>3-5</td>
<td>10-30</td>
</tr>
</tbody>
</table>
Scheduling Persistent Memory

- Workflow Session 4 ready to run
- Data not local
- Migrate
- Workflow Session 4 started

- Issues
 - Space at destination
 - Comms Interference
Scheduling Persistent Memory

- Workflow Session 4 ready to run
- Data not local
- Migrate
- Workflow Session 4 started

Issues
- Space at destination
- Comms Interference
Persistent Memory v. Storage

- Persistent Memory is fast but it’s...
 - Local to the process using it
 - Inaccessible on node failure
 - Fixed schema

- Storage may be slower but it’s...
 - Globally accessible
 - Consistent & durable
 - Snapshotable / Cloneable / Migrateable

- APIs required to...
 - Convert PM ↔ Storage
 - Persist / Instantiate Distributed Persistent Memory images
 - PM schema conversion
 - Support workflow scheduler integration
 - Data-aware process instantiation
 - Process-aware data migration
DAOS-M

- Client & Server OS bypass
- Connectionless
 - Peer-to-peer connectivity = ~100x client/server
 - Heavyweight security / ownership checks once on container open
- Memory VOSD
 - PM programming model
 - No block I/O stack latency
 - Byte granular
 - Read
 - Extremely low latency
 - committed writes integrated on index traversal
 - Write
 - Incoming data and metadata logged
 - Integration processes inserts into index
I/O Stack Configurations

Compute Node
- Application
- Query
- Tools
 - HDF5/VOL
 - POSIX
 - IOD
 - I/O Forwarding Client
 - DAOS-M Client
 - DAOS-M Server
 - NVRAM

IO / BB Node
- Analysis Shipping
- I/O Forwarding Server
 - IOD
 - POSIX
 - SSD
 - DAOS-L Client

Exascale System
- Storage Server
 - Analysis Shipping
 - HDF5/VOL
 - POSIX
 - DAOS-L Client
 - DAOS-L Server
 - SSD
 - Disk

Workstation
- Application
- Query
- Tools
 - HDF5/VOL
 - POSIX
 - IOD
 - DAOS-L Client

Workstation
Summary

- Ubiquitous NVRAM changes the game
- 3 order of magnitude step change in performance from disk
 - Terabytes/s -> Petabytes/s
 - mS latency -> µS latency
- Workflows will change to exploit
 - Persistent Memory programming models
 - Data aware workflow scheduling
- Storage software must change to exploit
 - Same transactional guarantees required
 - End-to-end OS bypass required
 - Scalable comms/security context establishment
 - More I/O stack configuration flexibility