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Introduction

● Generative AI has become well known since 
ChatGPT chatbot appeared at the end of 2022.

● Large Language Model (LLM) applications are at 
the core of such capabilities.

● Models have been getting bigger and more 
complex for several years.

● Compute, Storage, and IO patterns for LLM 
training are closer to “HPC” than single node ML 
AI or inference workloads.

● Need for large scale performance platforms with 
performance storage.

● Need to integrate in more secure environments 
while sustaining scalability.
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Our compute platform

• H100 SuperPOD Deployment

• #9 on Nov’23 TOP500 (121.40 PF)

• 576 NVIDIA DGX systems, each with 
eight H100 GPUs

• Quantum-2 NDR InfiniBand 
networking, with separate Compute 
(8-rail) and Storage fabrics (2-rail)

• Supports wide community of users

• Early hardware QA

• Scale testing and CI for software

• Large-scale AI training

• Our system replicates all the key 
hardware, design features, and 
network topologies for ongoing 
research and testing.

(It's just a little smaller ☺ )

A smaller version of the Eos DGX AI supercomputer
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The attached storage platform

• 12 DDN AI400X2 appliances. Each with:

• 24x NVMe drives

• 8x 200Gb/s IB links

• 4x Lustre Server VMs

• 2x MDTs (24 total in the FS, using DNE with automatic 
round-robin to depth of 4)

• 8x OSTs (96 total in the FS, using PFL default striping)

• Lustre 2.14.0 with many additional patches, on clients and servers

• PCC-RO available with user flag per Slurm job

• Project Quotas

• Subdirectory Mounts

• helps with dataset management and access controls

• Kerberos for enhanced security

• (more on this later!)

DDN EXAScaler Lustre configuration used for these experiments

 ~1TB/s peak bandwidth
 (NOT the bottleneck for our example runs!)
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LLM setup with Megatron-LM

• We are focusing on a training workload.

• We use the Megatron-LM to run our LLM model (https://github.com/NVIDIA/Megatron-LM).

• The previous LLM model presented in the past (LUG2021) has 13B parameters.

• We extended our work with a much larger model and dataset (340B, 8T[1]) to see how I/O evolves in the latest setup.

• Model configuration run was 340B, with:

• tensor parallelism, pipeline parallelism and data parallelism allowing scalability to the 10k GPU range.

Open Source LLM framework

[1] Parmar, Jupinder, et al. "Nemotron-4 15B Technical Report." arXiv preprint arXiv:2402.16819 (2024).

https://github.com/NVIDIA/Megatron-LM


6

Workload patterns

• Startup phase, followed by sequences of compute iterations, with periodic checkpointing

Iterative processing cycle

C
O
M
P
U
TE

I/O

High level pattern is similar 
to typical HPC 
checkpointing.

Minimal read at each 
iteration.
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I/O patterns

• Initialization read phase – only once

• Compute phase – iterative GPU processing

• Checkpoint write phase – every N compute iterations

• Note: uses buffered IO

Init read phase
Compute

Checkpointing

3 distinct phases

Typical traditional HPC application pattern, 
with sub-optimal checkpointing that could 
be improved.
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Focus on reads

• Very low read during compute phase: ~3MB/s

• I/O sizes are small: < 4KB 

• The aggregate read volume scales linearly as node count increases.

Zoom in on initialization and compute iterations

Compute Zoom in shows ongoing dataset 
ingest.
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Focus on writes

• In this current implementation, synchronous checkpointing is stalling job progress.  The GPUs are busy waiting.

The checkpoint challenge
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• Checkpoint size is 4.3 TiB

• Checkpoint is done by few nodes (model parallelism). Spike at 75 GB/s

• Each client is writing at ~6 GB/s (out of 93 GB/s available write capability)

• Checkpointing lasts for 90 sec

Checkpoint details
The shape of our example model-parallel test

Checkpointing

In this version of the model, 
peak IO scales with model 
parallelism and NOT with 
node count.
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Opportunities for efficiency improvement

• Simulating checkpoints artificially, we can run fully parallel version of the workload’s write IO

• Below is an example of 10 checkpoints on 48 nodes

• Each checkpoint lasting 16s, peak at 275 GB/s (~4x speedup) 

What would parallel checkpointing look like?

Here, peak IO scales 
with model size AND 
with node count.

Potentially more 
benefits from looking 
into checkpointing 
asynchronously.
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Takeaways

• Very low read bandwidth observed during compute phase → FS capability should focus on small IOs (or 
other workloads).

• Checkpoint scalability can enable large write peaks → demand more from the file system.

• Future checkpoint improvements could change the IO pattern again → rely on efficient concurrency from 
CPUs and network fabrics.

for LLMs
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Workflow context

• Continuous Integration pipelines run a 
large portion of the jobs on our system.

• CI is great for:

• System performance regression testing.

• Developer application regression testing.

• User ad-hoc test runs.

• Setup and authentication require 
careful attention.

Running through a CI for reproducibility

Gitlab
Runner
Node Cluster

Lustre

Job
Job
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Challenges with CI

• Running jobs through a CI environment is often done using shared accounts with poor traceability.

• Using SSH keys between runner node and cluster does not provide authentication and revocability.

• Shared CI accounts encourage unnecessarily open filesystem permissions.

Manageability and security

Gitlab
Runner
Node Cluster

Lustre

Job
Job

ssh keys

We want real and individual user 
accounts to be used.

But first we need strong 
authentication on the cluster itself…
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• Well-established authentication protocol

• Supports modern cipher suites (eg: AES and SHA2)

• Authentication is centralized in a KDC

• Kerberos manages:
• Identities like users or services
• Credentials (password or keytabs)
• Domains, named realms

• Benefits
• Keep user and password in one place
• Single Sign On capability
• Each service and host has its own keytabs
• Servers and clients can authenticate each other (not just 

one-way trust)

Kerberos framework for strong authentication
What it is?  How does it work?

KDC
(user db, passwords)

A Kerberos realm

Service B
Keytab

Service A
Keytab

Client

User

Ticket
Authenticate with 

tickets
Authenticate with 

keytabs

KDC
(user db, passwords)
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• There is an increasing need for security and integration in 
computing environments.

• Kerberos provides a way to improve security, limiting wide 
access permissions from clients.

• More traditionally, Kerberos is used to control access to 
cluster login nodes.

• But we are deploying to most services, notably to 
authenticate storage access.

• By default, Lustre trusts any mounting clients and UID/GID 
from them.

• Kerberos adds protection against a compromised host.

• Lustre has supported Kerberos for a long time.

• But needed some refreshing.

• Working with the community on bugfixes and improvements.

Securing the environment
Improving CI and Lustre security with Kerberos

KDC
(user db, passwords)

Lustre services in a Kerberos realm

Authenticate with 
tickets

MGS

Client

User

OSS

Keytab

MDS

Keytab

Keytab

Ticket

Keytab
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Continuous Integration in a secured environment

• System access and Lustre access 
requires a Kerberos ticket.

• Each service and host has its own 
keytabs.

• Clients too

• Servers and clients can authenticate 
each other at connection

• MDS validates users using their 
ticket

• Relying on the open source project Sybil 
to impersonate user

∙ Sybil fetches a user ticket that is used to 
access the cluster, and thus Lustre 
filesystem

∙ https://github.com/NVIDIA/sybil 

Putting it all together - Kerberos, Lustre, CI

Gitlab Runner

KDC

Sybil

Cluster

Lustre

Ticket

Ticket

Job
Job

Ticket

https://github.com/NVIDIA/sybil
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Digging deeper into Lustre and Kerberos

• Kerberos is enabled at connection level, and different 
flavors exist:

• Default:

• null No kerberos

• Authentication:

• krb5n Authentication only

• Integrity (checksumming):

• krb5a +Header message integrity
• krb5i +Bulk data integrity

• Privacy (encryption):

• krb5p +Message privacy (encrypted)

• But performance impact should be considered.

MGS

Client

OSS

Example per-connection Kerberos flavors

MDS

Choice of Kerberos flavors

krb5i

More security and data integrity comes at the cost of 
greater RPC processing resource requirements.

krb5n

krb5n

null

null



19

Kerberos flavor metadata performance

• mdtest benchmark run from 2 clients
• 2x Xeon 8480C 56c
• 2 TB RAM
• 2x NDR 400 Gb/s

• Performance impact is limited.

• Results vary in a range of 4-10%.

• Except for File removal, where the 
difference is going up to 25%.

Checksumming or encrypting small 
metadata RPC is not very expensive.

Limited impact
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krb5n performance for single client bandwidth

• Single client I/O bandwidth (fio test run from 
a DGX H100 client) has no performance 
impact: 91 GiB/s

• OST RPC does not authenticate users, so 
enabling krb5n does not impact the I/O path.

No impact for authentication mode (krb5n)

Negligible performance impact for 
large streaming I/O.  No drawback to 
enable krb5n for OSTs.
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Kerberos flavor scalability

• Up to 64 clients I/O bandwidth, with ior
∙Up to 85% performance drop, 
compared to krb5n

• Checksumming and encryption is 
consuming lots of CPU in crypto 
functions. Algorithm depends on the 
Kerberos key cipher-suite.

• Tested ciphers were AES and SHA1

• Investigation needed to see if 
improvements are possible with better 
implementation or different crypto 
algorithms.

Large impact of checksumming and encryption

85% difference

Performance impact is too important to 
enable more than krb5n (authentication 
only) for OSTs.
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• IO profiling of an example open LLM framework shows low read usage and increasing checkpointing 
performance.

• Security can be improved with Kerberos for Lustre at limited performance impact for both metadata and 
bulk IO.

• Application and filesystem performance can be monitored efficiently through a CI without sacrificing 
security.

Conclusion
Using Lustre to support Large Language Model IO and secured AI workflows
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Thank you

• We would like to thank:

• Seonmyeong Bak at NVIDIA for all the help to collect and decipher all the LLM data

• Sébastien Buisson, Andreas Dilger, Peter Jones for the support and fast patch delivery
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Questions?


