
1

LOV-OSC on MDS

1

Alex Zhuravlev
2009-11-09



SC'09 Technical Sessions 2

Disclaimer

• it's a prototype in many aspects
• the most important aspect is to learn whether we 

can use OSD API for other than original purposes
> can this simplify things
> can this improve quality

• if it works for LOV/OSC, try to find more 
features/components which could benefit from OSD 
API



SC'09 Technical Sessions 3

Two aspects of LOV-OSC

• used on MDS to
> create OST objects
> destroy OST objects
> change uid/gid on OST
> change OST object size in some cases

• used on a client to
> access data stored on OST

• the functionalities don't overlap
> except very few common cases



SC'09 Technical Sessions 4

Problems

• prone to be source of many bugs
> especially related to recovery

• hard to read and maintain
• functionality is very scattered

> especially related to recovery

• double-failure cases aren't handled
> MDS+client failure leads to file w/o objs

• likely not CPU-efficient:
> interaction overhead
> 4 + 5*N allocations on regular file create



SC'09 Technical Sessions 5

Not important details are exported

• with no real need
• MDT-MDD

> is aware of OST connections
> maintains per-OST states (last used id)
> tracks max LOVEA size

• LOV exports LOVEA
> just to use that data internally then
> MDD calls obd_unpack()
> then MDD sends LSM back to LOV



SC'09 Technical Sessions 6

The proposal

• OSD API
> simple
> object based
> support transactions
> stackable



SC'09 Technical Sessions 7

MDD

• MDD should be able to
> create objects 
> destroy objects
> change object attributes
> ... and make any of them part of big tx



SC'09 Technical Sessions 8

LOD: Logical Object Device

• replacement for LOV on a server
• takes care of striping

> maintains striping on a disk
> manipulates underlying objects

• exported via OSD API
• talks to others via OSD API
• don't initiate transactions, but can be part of 

transaction



SC'09 Technical Sessions 9

OSP: OST Proxy

• replacement for OSC on a server
• hides all precreation related logic

> layers above just create single object

• hides everything about orphan recovery
> MDD doesn't need to even know about last-used-id, 

connections, etc



SC'09 Technical Sessions 10

The stack

MDD

LOD

OSD

OSPOSP



SC'09 Technical Sessions 11

Use Case: file creation

• MDD creates object with 
LOD

• LOD creates local object
• LOD creates stripes
• all (except MDD) are 

called with ->do_create() 
method

• details are hidden

MDD

OSPOSPOSD

LOD

DMU



SC'09 Technical Sessions 12

Use Case: file creation in MDD

• asks LOD to fill an allocation hint
> e.g., LOD can decide about details of striping from 

parent object

• create, declare and start transaction
• and create object with ->do_create()



SC'09 Technical Sessions 13

Use Case: file creation in LOD

• decides whether object will be striped
• finds OSTs for stripes
• calls OSPs to create objects on corresponded OSTs
• generates LOV EA
• store LOV EA in the local object
• MDD doesn't need to care about any of these, even 

about details like journal credits for LOV EA update



SC'09 Technical Sessions 14

Use case: file creation in OSP

• OSP grabs object id from a pool
> pool is maintained by OSP

• OSP updates last used id on a storage
> within same transaction, automatically

• the pool is maintained asynchronously by OSP
• ->do_declare_create() reserves id
• MDD/LOD are not aware of anything this

> they just create object(s)



SC'09 Technical Sessions 15

Use Case: file removal

• MDD destroys object with 
LOD

• LOD destroys local object
• LOD destroys stripes
• all (except MDD) are 

called with ->do_destroy() 
method

• details are hidden

MDD

LOD

OSD

OSPOSP



SC'09 Technical Sessions 16

Use Case: file removal in MDD

• when nlink becomes 0
• and file isn't open
• MDD destoys object
• MDD doesn't care about llogs

> nor maintaining, nor declaration

• MDD doesn't even know whether object is striped or 
no



SC'09 Technical Sessions 17

Use Case: file removal in LOD

• LOD learns whether object is striped
> loading and parsing LOV EA

• LOD calls OSP to destroy stripes
• LOD destroys local object
• doesn't care about llog/cookies, etc



SC'09 Technical Sessions 18

Use Case: file removal in OSP

• appends llog record about object removal
• once record is committed, can send 

OST_DESTROY
> would be good to support bulks

• once OST_DESTROY is confirmed by 
last_committed cancel llog record



SC'09 Technical Sessions 19

Use Case: recovery in MDD

• essentially MDD does nothing about recovery
• doesn't even know about reconnection to OST, etc



SC'09 Technical Sessions 20

Use Case: change uid/gid

• very similar to previous examples
• MDD changes attributes on the object
• LOD changes attributes on all the stripes, if needed
• OSP uses llog to track changes
• OSP sends bulks of changes to OST



SC'09 Technical Sessions 21

Use Case: recovery in LOD

• doesn't need to know anything about recovery



SC'09 Technical Sessions 22

Use Case: recovery in OSP

• this is where all recovery about MDS-OST is
> loads last-used-id from disk
> destroy orphans ...
> ... or recreate missing objects
> scans llogs and completes transactions



SC'09 Technical Sessions 23

Problems: very easy on a paper only

• OSD API requires fid to be known before first 
access to an object

• LOV uses 3 methods in precreation:
> obd_create(), obd_precreate(), obd_create_async()
> can we implement the policy using less?

• many OSD API methods are sync
> is it OK that OSP maintains statfs cache?

• create replay sends LOV EA
> is it OK if MDT just sets it as xattr?

• more on demand ...



SC'09 Technical Sessions 24

Interesting observation

• LOD can implement striped dirs
• CROW becomes simpler

> in-core stripe representation can track status: deleted or 
not

> OSP can order changes/RPCs

• MDT/MDD don't need to know max LOV EA size
• declaration method allow OSP to reserve object in 

pool, assign id later
> see bz21186



SC'09 Technical Sessions 25

This is not the final picture

• OSP becomes empty (not needed)
> no need in special recovery mechanism

– when distributed transactions are here

> no need in precreation
– generate fids on demand (fids on OST)

– create objects on first access (CROW)



SC'09 Technical Sessions 26

The outcome

• modules have very clear functionality and 
responsibility

• API is the same:
> knowledge of API apply to many modules

• modules can be very simple/robust:
> e.g. MDD

– just translates operations into updates

– no optimizations and tricks required

– written once can be used for long w/o change as POSIX 
doesn't change often



SC'09 Technical Sessions 27

Remember disclaimer?

• in general, OSD API can be useful if
> there is storage (local or remote)
> there are transactions
> changes are single-object 



SC'09 Technical Sessions 28

What other features/components?
• remote OSD

> let MDD talk to remote disk like it's local and get CMD + 
WBC + proxy

• distributed transaction manager
> can track all updates going through OSD API to a disk 

(remote or local)
> log undo-redo requiring no parsing

• quota
> can track all quota related changes via OSD API, not ad-

hoc in MDD/OFD

• mirroring
> monitor all updates, send copy to mirror/backup


