Interoperability at server side

Rahul Deshmukh

5 August 2008

1 Introduction

1.1 Definitions

Following terminologies are used in this HLD (These defani are taken from arch
page):

e OLD: any major release in b1l_6 line of development. (release 1.6)

e OLD.X: arelease in b1_6 line containing client that is able to adewith a
NEW.0 md server. (Tentatively 1.8.)

e NEW.O: first release based on HEAD. This features kernel serveruaes |d-
iskfs as a back-end. This is (tentatively) 2.0. It is impott® note that NEW.O
is a temporary intermediate release whose purpose is tot ¢ffasition from
Idiskfs-based to DMU-based clusters.

e OLD object, NEW object: In NEW.0 release, MDS will be upgraded from fid-
less to fid-enable, keeping the underlying Idiskfs storag®@dct. Due to this in
NEW.0 release, NEW objects (created by NEW.O fid-enabled Métsl OLD
objects (already present, created by OLD.X fid-less MDS))véglpresent.

e NEW.1: next release based on HEAD. This release introduces sufgudits
on OST, and DMU as a back-end, in addition to continued sugpotdiskfs.
This is (tentatively) 2.x.

e Fill-in-fid: a special not otherwise used fid value, reserved to indinaelRE-
ATE RPC that client requests server to generate fid for nevdgted object on
client’'s behalf. This fid is taken from one of the system-resd fid sequences.

1.2 Background 3 REQUIREMENTS

1.2 Background

In OLD release both Meta Data Server (MDS) and it's storageat use fid. In NEW.1
release both MDS and it's storage will be fid-enabled. To jenteroperability
between these two releases (OLD/1.6 and NEW.1/2.X releas®yding to the (+-1)
policy, OLD.X and NEW.0 is introduced.

e OLD.X will address network protocol related interoperapithanges (i.e. here
client will have ability to talk fid-less and fid-enabled pyool).

e And NEW.O release having interoperability changes whidhaddress disk in-
teroperability part (i.e. fid-enabled MDS running on OLDldisrmat).

This HLD will concentrate on disk interoperability relatedents i.e. changes intro-
duced in NEW.0 release.

| ID | Type of MDS | Type of MDS-Storagd Description |
OoLD fid-less fid-less Fid-less version
OLD.X fid-less fid-less Interoperability: Network protoco
NEW.0 fid fid-less Interoperability: Disk
NEW.1 fid fid Fid-enabled version

Understanding of fid and NEW MDS stackis assumed. In brief, the MDS stack
consists of MDT (networking details), CMM (placement p@i), MDD (meta data
operations) and OSD layer (object storage details). (iBTMCMM->MDD->0OSD)

2 Architecture

Link to the architecture desighttp://arch.lustre.org/index.php?title=Interoperaity fids_zfs

Understanding of interoperability details mention in timklare assumed.

3 Requirements

Requirements for running fid-enabled MDS on fid-less starage

IMDS stack overview is present inds-layering-hld.lyx

3.1 Functional requirements 3 REQUIREMENTS

3.1 Functional requirements

3.1.1 NEW.0 Release

ID Quality Trigger Affected
Description
Index operations] Usability Create, lookup, delete OosD For NEW object, name->fid
fid_inode_ea operations on newly createq mapping should work i.e. fid
files, from user point of view should be stored in inode’s ea
OR index operation on NEW to make it persistent.
objects, from Lustre point of
view
Index operations] Usability | Lookup or delete operations OSD OLD object will not have fid
igif on already created files, from stored in inode ea, so to
user point of view OR index support name->fid mapping
operation on OLD objects, igif (which is dynamically
from Lustre point of view. generated fid, from ino and
inode generation or in
simpler words it is used as fid
for those files who do not
have formal fid) support must
be present
Iterator Usability Directory read operation, OosD Support for iterator based on,
operations empty directory check (say fid-less storage.This also
while removing directory) must handle OLD as well ag
from user point of view OR NEW objects.
iterator operations from
Lustre point of view.
mount Usability Mount command OsD Fid-enabled mds should be
able to mount on fid-less
storage, transparently.

3.1.2 OLD.X release

ID Quality Trigger Affected
Description
To remove fid ea| Usability Any operation that will N/A To support upgrade and
access a file downgrade multiple times,

Fid-less (or OLD.X) MDS
needs to remove fid from
inode ea (inserted by NEW.(
MDS), if present.

3.2 Architecture requirements 4 EXTERNAL FUNCTIONAL SPEGTATIONS

3.2 Architecture requirements

e All the changes needs to be handled at OSD layer. This willasake minimal
or no changes needed at the layer above OSD (MDS stack is MINMMN-
>MDD->0SD).

4 External Functional specifications

In NEW.O release we will upgrade fid-less MDS to fid-enabled$/Reeping the un-

derlying storage same (i.e. Idiskfs or can be called as fid}leTo make this possible,
following main conditions needs to be fulfilled (restatihg trequirement here for bet-
ter understanding).

e To maintain index mapping for OLD as well as NEW object (regoient 1D
from section 3.1 “fid_inode_ea” and “igif”), to support basperations (like file
lookup). Note here that index mappings are introduced irefidbled MDS to
support Cluster Meta Data (CMD) operations.

e To support iterator running on fid-less storage (requirdrti2firom section 3.1
“Iterator operations”) which is required for operationsated to reading direc-
tory (e.g. Is <no input>)

4.1 Prototypes

This section describe what needs to be done to fulfill abov&tim® conditions.

4.1.1 Index Operation APIs:

Index operations, helps to maintain persistent mappingde key (e.g. fid, ino) and
it's value (e.g. name, fid). Fid-enable MDS mainly maintaimge types of persistent
mappings. These are name->fid, fid->ino and fid->mdt.

To maintain name->fid mapping, fid needs to be stored in suchyatkat, it can be
retried back for given name during lookup and also it showtlimtroduced any disk
format change (As in NEW.0 release, meta data is stored in.@f@mat or Idiskfs

format). If fid is stored inode’s extended attributes (efa@ntit will satisfy both condi-
tions to maintain name->fid mapping.

Note: This is just for reference, when fid-enabled MDS runfidnenabled storage i.e.
Idiskfs+iam, then fid is stored in directory entry to maintd name->fid mapping.

Prototypes of functions which will be implemented in NEWdlease, to maintain
name->fid mapping, for both NEW and OLD objects are as follfiWsese APIs are
self explanatory)

4.1 Prototypes 4 EXTERNAL FUNCTIONAL SPECIFICATIONS

e Index insert:

int osd_index_ea_insert (const struct lu_env *env,
struct dt_object *dt,
const struct dt_rec *rec,
const struct dt_key xkey,
struct thandle *handle,
struct lustre_capa *capa);

e Index lookup:

int osd_index_ea_lookup (const struct lu_env *env,
struct dt_object *dt,
struct dt_rec *rec,
const struct dt_key xkey,
struct lustre_capa *capa);

e Index delete:

int osd_index_ea_delete (const struct lu_env *env,
struct dt_object *dt,
const struct dt_key x*key,
struct thandle xhandle,
struct lustre_capa *capa);

Other mappings (fid->ino and fid->mdt) can be maintain, witkslor no change, as
these mappings are stored in special files (viz. /oi and /fliyese mappings will be
maintained by existing functions osd_index_insert(), @sdex_lookup(), osd_index_delete().

4.1.2 |Igif handling:

In NEW.0 release, MDS will be upgraded from fid-less to fidtdaakeeping the un-
derlying Idiskfs storage in tact. Due to this in NEW.0 reledSEW objects (created by
NEW.0 fid-enabled MDS) and OLD objects (already presentatectby OLD.X fid-
less MDS) will be present. So to support name->fid mappingfioD object igif will
be used. Igif is nothing but dynamically generated fid, froim &nd inode generation
or in simpler words it is used as fid for those files who do noeHavmal fid.

In NEW.O release igif format will be as (This format will alé®lps to maintain fid
version, which will be useful in version based recovery):

e sequence = (0:33 and ino:31)

e object_id =gen

4.1 Prototypes 4 EXTERNAL FUNCTIONAL SPECIFICATIONS

e version = LUSTRE_FID_VERSION

Due to change in igif format, following function will be impted or need to be modi-
fied:

o Build Igif:

To build igif following function is used. This function is rirdy responsible to
generate igif (i.e. dynamic fid) from ino and inode generatiomber.

void lu_igif_build(struct lu_fid *fid u32 ino u32 gen)

y —= | J——

e Check igif:

This function checks if the input value is igif or not (in diétd, it uses sequence
no to make a decision)

static inline int fid_is_igif(const struct lu_fid *fid)

e Extracting values from igif:

Following functions extracts the particular(ino, inodengeation number) value
from igif format. These will modified considering changedgif format.

__u32 lu_igif_ino(const struct lu_fid *fid)
__u32 lu_igif_gen(const struct lu_fid *fid)

4.1.3 lIterator Operation API:

Iterator operations are used to traverse the index mappigKey->value pair). In

NEW.0 release, to traverse fid->ino and fid->mdt mapping gem&M iterator can be

used. But to traverse name->fid mapping new iterator API si¢edbe implemented
(as fid is stored in inode’s ea). Their prototypes are asyval{These APIs are self
explanatory):

e dio_it->init()

struct dt_it *osd_it_ea_init (const struct lu_env *env,
struct dt_object *dt,
int writeable,
struct lustre_capa *capa);

e dio_it->fini()

4.1

Prototypes 4 EXTERNAL FUNCTIONAL SPECIFICATIONS

void osd_it_ea_fini(const struct lu_env *env,
struct dt_it *di);

dio_it->get()

int osd_it_ea_get (const struct lu_env *env,
struct dt_it *di,
const struct dt_key *key);

dio_it->put()

void osd_it_ea_put (const struct lu_env *env, struct dt_it *di);

dio_it->next()

int osd_it_ea_next (const struct lu_env *env, struct dt_it *di);

dio_it->del()

int osd_it_ea_del (const struct lu_env *env, struct dt_it *di,
struct thandle *th);

dio_it->key()

struct dt_key *osd_it_ea_key (const struct lu_env *env,
const struct dt_it *di);

dio_it->key_size()

int osd_it_ea_key_size (const struct lu_env *env,
const struct dt_it *di);

dio_it->rec()

struct dt_rec *osd_it_ea_rec (const struct lu_env *env,
dio_it->store()

__ub4 osd_it_ea_store (const struct lu_env *env,
const struct dt_it *di)

dio_it->load()

int osd_it_ea_load(const struct lu_env *env,

CC

4.2 Layering of API’s 4 EXTERNAL FUNCTIONAL SPECIFICATIONS

4.2 Layering of API's
4.2.1 Index API

The layering of API, applicable to index operations are ds\ics:

¢ fid->ino and fid->mdt mapping
| Layer 1: User of the API | FLD, OSD (e.g. osd_oi_insert()) |

Layer 2: Indexing API used (Wrapper APJ) Indexing APl at OSD (e.g. osd_index_insert
Layer 3: Generic APl used by Layer 2 IAM Indexing API (e.g. iam_index_insert())

To understand it completely e.g. for fid->ino mapping fuois will be called in
sequence as osd_oi_inset()->osd_index_insert->iaraxindsert()

e name->fid mapping
| Layer 1: User of the API | MDD (e.g __mdd_index_insert()) |
| Layer 2: Indexing API used Indexing APl at OSD (e.g. osd_index_ea_inser}())

4.2.2 lterator API

The API layering for iterator API is as follows:

| Layer 1: User of the AP| MDD Layer (e.g __mdd_readpage())
| Layer 2: Iterator APl | Iterator APl at OSD (e.g. osd_it_init())

4.2.3 lIgif:

The layering of mostly used API, are as follows:

o Iu_igif_build

This function is used by osd_index_lookup(), when fid for Oaffject needs to
be returned.
| Layer 1: User of the API (lu_igif_build] OSD, osd_index_lookup, fid for OLD obje¢t

| Layer 2: Igif check | lu_igif_build() |

o fid_is_igif():
This function is mostly used by Object Index (fid->ino) mappfunctions to
check that fid is igif or not. It will make sure that for igif, fidino mapping is
not check. (as there will not be any entry) and also make batg¢dsd_oi_insert-
>o0sd_index_insert()) osd_index_insert will never getagiinput.
| Layer 1: User of the API (fid_is_igiff OSD, Object index functions (i.e. osd_oi_insert())

| Layer 2: Igif check | fid_is_igif() |

5 USE-CASE SCENARIOS

5 Use-Case Scenarios

5.1 Describe use cases for all normal and abnormal uses of ext
nally visible functions.

5.1.1 Index operations

Following are the use-cases for create, lookup, renameeletbcbperations consider-
ing new interoperability index APIs and Igif changes or riegiment ID from section
3.1*fid_inode_ea” and “igif” for NEW.O release.

1. Object creation in NEW.O release (i.e. touch file_nametloemalternative way
to create file.):

(a) Client allocates fill-in-fid and sends file creation resfue MDS.

(b) MDS gets the request, it will first checks if the fid is ecutal special fill-
in-fid, then it generates new fid from an internal fid sequence.

(c) MDS then looks for that file name, to check if it is present.

(d) If file is not present then object allocation and initzaliion will happen at
MDT and then at CMM layer.

(e) Then at OSD layer, inode will be created for that file. Afteat fid is
inserted into inode’s ea (that will be used in name->fid magpand fid-
>ino mapping is created by inserting object index entry igkobal file
using IAM functions. Here there is no change, the way fid->fimepping
done.
(f) After that at MDD layer, Idiskfs style directory entry.¢i {name, ino}) is
added using osd_index_ea_insert() (i.e. osd_index_seart{i+>Idiskfs_add_entry()
). This will helps to maintain name->fid mapping (i.e. nantir>lookup()-
>inode->read_ea()->fid).
(g) Success is returned to client.

2. Object lookup in NEW.O release

e For NEW object (i.e Is new_file).

(a) Consider any request from client to MDS, to access inddewly
created file.

(b) MDS gets the request, it will first lookup for that file-nanto check if
it is present. For that MDD layer requests interoperabitityde index
lookup function (These are the function which will be buiksing Id-
iskfs functions. These functions read fid stored in inodeteajet fid
for given name. This is the first index lookup (key=name, gafid).

(c) Iffile is present, then fid stored in inode’s ea will be reldid exists
then it will be returned by interoperability mode index lapkfunc-
tion.

5.1 Describe use cases for all normal and abnormal useserfeXy visible
functions. 5 USE-CASE SCENARIOS

(d) Gotthe fid, OSD layer check if second index lookup (keyafadue=ino)
is needed or not by checking if fid is igif or not. In this caseigichot
igif. So it requests IAM index lookup function to get ino fargn fid.
Here IAM index lookup functions will be used.

(e) Iffid is presentin object index mapping, then IAM inderkaoip func-
tion returnsino.

(f) Using ino, load the inode and read the required data.

(g) Fidisreturned to client if necessary.

e For OLD object (i.e Is old_file).

(a) Consider any request from client to MDS, to access indadready
existing file.

(b) MDS gets the request, it will first lookup for that file-nanto check if
it is present. For that MDD layer requests interoperabitityde index
lookup function to get fid for given name. This is the first irdtsokup
(key=name, value=fid).

(c) Iffile is present, then fid stored in inode’s ea will be rekid will not
present in inode ea as this file is created by fid-less senvéid case
interoperability mode index lookup function will dynamilyagenerate
fid, called as igif (1gif will be build using ino + generatiomnpair)

(d) Gotthe fid, OSD layer check if second index lookup (key~fadue=ino)
is needed or not by checking if fid is igif or not. In this caseisidif.
So it will not request to second index lookup, instead inodmber
and inode generation stored in igif will be returned.

(e) Using ino, load the inode (already present in memory) read the
required data.

() Fid is returned to client if necessary.
3. Object rename in NEW.O release (i.e. mv src_file tgt_file)

(a) Client send requestto MDS to rename the file meta-data.

(b) MDS gets the request, it will first looks for that src filenmg, to check if it
is present.

(c) MDS gets the request, it will first looks for that tgt filema, to check if it
is present.

(d) If the src file present and tgt file is not present then, MRer request
to remove directory entry of src object and tgt object. Thif done
using interoperability mode index function. (i.e.osd érdea_delete()-
>|diskfs_delete_entry()). This description holds true IREW object as
well for OLD object

(e) Afterthat MDD layer request to add directory entry fardgject, using in-
teroperability mode index function. (i.e. osd_index_eaert()->ldiskfs_add_entry()).
Hence we have replaced the src name with tgt name (by reméwato
dir_entry and addition of tgt dir_entry) without touchirftetfid stored in

10

5.1 Describe use cases for all normal and abnormal useserfeXy visible
functions. 5 USE-CASE SCENARIOS

inode ea.This description holds true for NEW tgt object a#i fee OLD
tgt object.

() Success is returned to client.
4. Object Delete in NEW.O release (i.e. rm file_name)

(a) Client send requestto MDS to delete the file meta-data.

(b) MDS gets the request, it will first looks for that src filenma, to check if it
is present.

(c) MDD layer request to interoperability index functioogémove the name-
>fid mapping (i.e. remove directory entry only).

(d) OSD layer request to IAM functions to remove the fid->inapping.

(e) Object cleanup is done layer wise.Note here that inadietecount ==
then only object cleanup is done.

() Success is returned to client.

5.1.2 Iterator operations

Following are the use-cases for directory read, empty tirgcheck operations con-
sidering new interoperability iterator functionality arquirement ID “Iterator opera-
tions” for NEW.O release.

1. Directory read in NEW.0 release (i.e. Is <no_input>)

(a) Client send directory read request to MDS.

(b) MDS get the request, through MDD layer it iterate overdirectory using
interoperability mode iterator functions to get requirexdad

(c) Putthe required data in the format requested by cliedtsand it to client.
2. Empty directory check in NEW.0 release (i.e. rmdir dinmeg

(a) Client send to remove the directory meta data.

(b) MDS get the request, through MDD layer it iterate overdirectory using
interoperability mode iterator functions to check if dit@ty is empty or
not.

(c) If the directory is empty then MDS remove the directorytangata.
(d) Success is returned to client.

11

5.2 Describe use cases demonstrating interoperabilitydsat the software with
and without this module. 5 USE-CASE SCENARIOS

5.2 Describe use cases demonstrating interoperability beteen the
software with and without this module.

5.2.1 Interoperability between the software with this module (Interoperability
within the scope of this HLD is discussed)

This HLD deals with changes done in MDS for interoperabitityde. Those changes
comes into picture when upgrading/downgrading from OLDIRW.0 to NEW.0/OLD.X.
So only those cases are considered here.

1. Up-gradation/Down-gradation from OLD.X/NEW.0 to NEWDQ.D.X,

In NEW.0 release, to run fid-enabled NEW.0 MDS on fid-less OLBds-
storage some functionality addition will be done in NEW.0 BlDThese
functionality additions are nothing but tasks discussettiimHLD (except
for orphan handling task discussed in separate documeithwbmes into
picture in case of recovery). These details are highlighteak, just to
understand the place where these changes fit into. Also terstahd how
these changes will help, possible upgrade(+1) and doweéad

To start with, all clients, MDT and OSTs are running OLD.Xeaabe.
OLD.X clients and OSTs are capable of talking to NEW.0 protoc

First MDS will we upgraded from OLD.X to NEW.0 keeping the MBS
Storage same (i.e. fid-less or OLD.X MDS-Storage) usingdadir mech-
anism without losing* any functionality. Here clients camtinue without
evictions. This will be achieved considering completionlonges in MDS
mention in the HLD and also the clients and OSTs ability t& tdEW.0
protocol.

After MDS, clients and OSTs will be upgraded (one by one) flohD.X

to NEW.0. Client and OST can be upgraded in any order. Note thext,
now we have NEW.0 clients and OSTs, which only speak NEW.@ wir
protocol.

All clients, OSTs and MDS are upgraded to NEW.0 release.

From here first NEW.0 client/OST can be downgraded to OLD. ény
order. Even after downgrade, they will still have ability tadk NEW.0
protocol.

Now we have OLD.X clients and OSTs. We know OLD.X clients and
OSTs are able to talk NEW.0 protocol. So MDS can be downgréaea
NEW.0 to OLD.X release (i.e. fid-less MDS and fid-less MDS¢&¢®).
without losing any functionality (This possible also besadhere is not
any disk-level changes in NEW.O release).

Finally all clients, MDT and OSTs will be running OLD.X relsa

2. Upgrade and downgrade multiple times

12

5.3 Describe use cases demonstrating any scalability $es caentioned in the
architecture document. 6 HIGHLEVEL LOGIC

To support the upgrade and downgrade operation multiplestifine. OLD.X->NEW.0-
>0LD.X->NEW.0), we need to take care of (or to remove) therfekrted into inode ea,
by NEW.0 mds in NEW.0 release. The following two cases wiatée the purpose
to do this and how it will taken care respectively.

e The purpose, to remove ea storing fid by OLD.X mds.

— OLD.Xmdsis upgraded to NEW.0 mds keeping OLD.X Idiskfs nstisrage
in tact.

— New file X is created by NEW.0 mds, with fid F.

— NEW.X mds is downgrade to OLD.X mds, again keeping mds-gemia
tact.

— OLD.X Client CO accesses X, and gets (ino, gen) back. CO takesk on
(ino, gen)

— Again OLD.X mds is upgraded to NEW.0 mds, keeping mds-swiag
tact.

— Client C1 accesses X, and gets F back. C1 takes a lock on F.

— Now we have two different clients accessing the same file akidg locks
in different name-spaces. So to avoid it, ea storing fid neelde removed.

o When/how OLD.X mds will remove the fid ea.

— Any file access trigger, OLD.X mds to load an inode.
— OLD.X mds will first check whether the inode has fid ea.

— If the fid ea is present then remove it. This is how fid ea willdleeh care
off.

5.3 Describe use cases demonstrating any scalability usesea men-
tioned in the architecture document.

N/A

6 High Level Logic

6.1 Index Operations:
In NEW.O release, name->fid mapping will be maintained byistpfid into inode’s

ea. Following sections describe how name->fid mapping wilhbndled in file create,
lookup and delete operation.

13

6.1 Index Operations: 6 HIGHLEVEL LOGIC

6.1.1 File creation

When file is created in fid-enabled MDS, following main evefimswhich we are in-
terested) happened:

e name->fid mapping

In NEW.O release, for name to fid mapping we want fid into inodeard at
the same time fid should not touched (i.e. no removal or retiosg till it's life
time.To server this purpose we will insert fid into inode e&wbbject is created
(i.e. in osd_object_create()) for a given file (of-courseeminode allocation).
When actual name->fid mapping will be done (i.e. when osdnda_insert()
is called) then Idiskfs style ({name, ino}) directory entnjll be inserted using
Idiskfs_add_entry().

Hence using fid into inode ea and addition of directory enteywill able to cre-
ate persistent name->fid mapping (i.e. name->dir_lookup(pde->get_ea(fid)).
Note: There will be addition of file system specific calls vehihlking to Idiskfs
storage (e.g. Idiskfs_add_entry()) in osd module, in NEWAOthe same time
NEW.1 has dmu-osd module to talk to ZFS. So it is worth to nentiat in case
of merge of osd module and dmu-osd module file-system speaeificadded for
interoperability, should be handled. It is also true thahight not required as
there will not be interoperability support when dmu will beed.

¢ fid->ino mapping

Fid->ino mapping is maintain in special file i.e. /oi. Thischanism can also be
used in NEW.0 release. So in NEW.0 release, no changes wiidquered for fid-
>ino mapping (i.e. it will be handled through IAM only or uginsd_index_insert()).

6.1.2 File lookup

In fid-enabled MDS lookup is done by:

e Name

In NEW.O release, for object lookup by name, osd_index aakup() will be
implemented to get fid for given name. Implementation detaié as:

— When NEW object will be looked-up, fid will be fetched from thels ea
(.i.e. name->dir_lookup()->gut_ea(fid)) and

— When OLD object will be looked-up, igif will be generated, as fid
stored in inode ea for OLD object (.i.e. name->dir_lookempgut ea(fid)-
>no_fid_found->generate_igif()). lgif is nothing but dynizally gener-
ated fid, which consists of ino and inode generation.

14

6.2 |lgif 6 HIGHLEVEL LOGIC

e Fid
In NEW.O release there will not be any change in a way fid->irapping is

done. So there will not be any change for lookup by fid as wedl (iexiting
osd_index_lookup() can be used).

Note: Also before calling to osd_index_lookup(), igif ckés done to confirm
that osd_index_lookup will always get fid. So no need consatekup by igif.

6.1.3 File delete

When file is delete in fid-enabled MDS, following main thinggppened (These are
the things in which we are interested in):

e name->fid mapping

In NEW.0 release. when to remove name->fid mapping (i.etecakd_index_ea_delete())
Idiskfs style directory entry will be removed (i.e. call aiskfs_delete_entry()).

This is applicable to OLD as well as NEW object. (or there willt be any
difference in OLD and NEW object handling)

Note: inode and fid related cleanup will be done by system whigrk count
becomes zero.

¢ fid->ino mapping

No changes will be required to remove fid->ino mapping (L&l be handled
through 1AM only or using osd_index_delete()).

6.2 Igif
6.2.1 To build igif

Now to support the new igif format, following things will bede:

fid->f_seq = ino;
fid->f_oid = gen;
fid->f_ver = LUSTRE_FID_VERSION;

6.2.2 To check igif
This will implemented considering following facts:

e SEQ ==1, igif
e 1<SEQ<0x100000000; Reserved
e SEQ >=0x100000000, normal FID.

15

6.3 lterator operations 6 HIGHLEVEL LOGIC

6.3 Iterator operations

In NEW.0 release to supportiterator operation, we needffilks dt_index_operations-
>dio_it with interoperability (i.e. ldiskfs storage) baskinction pointers.Their func-
tionality is described below:

e struct dt it
It will contains fields to store file pointer (i.e. struct fileofe_file) and dentry
(i.e. struct dirent64 * oie_dentry)

e dio_it->init()
To initialize the iterator data structure i.e. it->oie_fied it->oie_dentry.

e dio_it->fini()
To destroy the iterator context

e dio_it->get()
To traverse the iterator’s in memory structure and retuenvdue (i.e. fid) for
given input key (i.e. name).

e dio_it->put()
Just to decrement the reference count.

o dio_it->del()
To delete the value for current key position stored in i@ratin memory struc-
ture.

e dio_it->key()
To return the key (i.e. name) at current position from iteratin memory struc-
ture.

e dio_it->key size()
return the value of key size at current position from iteratm memory struc-
ture.

e dio_it->rec()
To return the value (i.e. packed fid/igif) at current positio

— new_obj: load_inode->getxattr(fid)->return it
— old_obj: load_inode->generate_igif->return it

e dio_it->store()

To return a cookie for current position of the iterator headhat user can use
this cookie to load/start the iterator next time.

16

6.4 Mount 7 STATE MACHINE DESIGN

e dio_it->next()

It will call function (say osd_Idiskfs_it_fill()) which wiluse Idiskfs_readdir()
to load the one directory entry at a time and stored it, in-imgniterator’s data
structure.

e dio it load

It will call function (say osd_Idiskfs_it_fill()) which wiluse Idiskfs_readdir()
to load the one directory entry at a time and stored it, in-mgniterator’s data
structure.

6.4 Mount

In NEW.O release, fid-enabled MDS will be running on fid-lass. (OLD) storage and
it will use OLD control

files (e.g. /last_rcvd, /ROOT, /PENDING, etc.) where padssiffhese things will be
taken care to make up-grade transparent to user.

6.5 Toremove fid ea

When OLD.X MDS loads an inode, it will has to check whetherithede has fid ea
(i.e. created by NEW.0 server) and if so, such fid ea will beaesd.

7 State Machine Design
7.1 Locking

N/A

7.2 Cache Usage

N/A

7.3 Recovery

Recovery related details not in the scope of this document.

7.4 Disk state changes

N/A as no disk changes.

17

9 PLAN REVIEW

8 TestPlan

For each test configuration, all the test-cases mentiorsirtése table will be executed.

8.1 Testcase:

| TestcaselID | Test case description | Expected Result

obj_create object creation through file create (e.g. touch file_name) file creation success
obj_lookup_new| new object lookup through file lookup (e.g. Is file_name) lookup returns valid values
obj_lookup_old old object lookup through file lookup (e.g. Is file_name) lookup returns valid values
obj_delete_new| new object deletion through file deletion (e.g. rm file_name) delete returns success
obj_delete_old | old object deletion through file deletion (e.g. rm file_name) delete returns success
obj_rename_new rename of new object through file rename (e.g. mvah) rename returns success
obj_rename_old rename of old object through file rename (e.g mv a b) rename returns success
read_dir execute a command to read the directory (i.e. Is <no inputedmmand returns valid value
del_dir execute a command to delete the directory (i.e. rmdir file) delete returns success

8.2 Test configuration:

| Sr.No. | Description | Client | OST | MDS |
1 Clients and OSTs and MDT running OLD.X versiognOLD.x | OLD.x | OLD.X
2 MDS upgraded to NEW.0 version OLD.X | OLD.x | NEW.O
3 Client & OST is upgraded to NEW.0 version | NEW.0 | NEW.0 | NEW.O
4 Client & OST is downgraded to OLD.X version | OLD.X | OLD.x | NEW.O
5 MDS downgraded to OLD.X version OLD.X | OLD.x | OLD.X

9 Plan Review

18

