
Robert Read
QUALITY INITIATIVE

What is it?

Where do we go from here?

Quality Initiative

2

LBATS - build automation on 4 architectures and OSs

YALA - test automation

Stage 2 testing automation

Feature testing

Found many bugs in our product

QE Successes

3

Overview

Feedback

Coverage

Automation & Infrastructure

4

FEEDBACK

Li Wei is just starting analysis

sanity.sh on single node achieves 50% coverage overall

excluding liblustre, libsysio, socklnd, lnet selftest, etc

60-70% coverage of core Lustre modules

Existing coverage analysis

6

sanity vs. acc-sm

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ld
is
kf
s/
ld
is
kf
s

ld
is
kf
s/
ld
is
kf
s/
lin
ux

ln
et
/in

cl
ud

e/
lib

cf
s

ln
et
/in

cl
ud

e/
lib

cf
s/
lin
ux

ln
et
/in

cl
ud

e/
ln
et

ln
et
/li
b
cf
s

ln
et
/li
b
cf
s/
lin
ux

ln
et
/ln

et

lu
st
re
/in

cl
ud

e

lu
st
re
/in

cl
ud

e/
lin
ux

lu
st
re
/in

cl
ud

e/
lu
st
re

lu
st
re
/ll
ite

lu
st
re
/lo

v

lu
st
re
/lv

fs

lu
st
re
/m

d
c

lu
st
re
/m

d
s

lu
st
re
/m

gc

lu
st
re
/m

gs

lu
st
re
/o
b
d
cl
as

s

lu
st
re
/o
b
d
cl
as

s/
lin
ux

lu
st
re
/o
b
d
fil
te
r

lu
st
re
/o
sc

lu
st
re
/o
st

lu
st
re
/p
tlr
p
c

lu
st
re
/q
uo

ta

lu
st
re
/u
til
s

acc-sm sanity

7

acc-sm vs. acc-sm

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ld
is
kf
s/
ld
is
kf
s

ld
is
kf
s/
ld
is
kf
s/
lin
ux

ln
et
/in

cl
ud

e/
lib

cf
s

ln
et
/in

cl
ud

e/
lib

cf
s/
lin
ux

ln
et
/in

cl
ud

e/
ln
et

ln
et
/li
b
cf
s

ln
et
/li
b
cf
s/
lin

ux

ln
et
/ln

et

lu
st
re
/in

cl
ud

e

lu
st
re
/in

cl
ud

e/
lin
ux

lu
st
re
/in

cl
ud

e/
lu
st
re

lu
st
re
/ll
ite

lu
st
re
/lo

v

lu
st
re
/lv

fs

lu
st
re
/m

d
c

lu
st
re
/m

d
s

lu
st
re
/m

gc

lu
st
re
/m

gs

lu
st
re
/o
b
d
cl
as

s

lu
st
re
/o
b
d
cl
as

s/
lin
ux

lu
st
re
/o
b
d
fil
te
r

lu
st
re
/o
sc

lu
st
re
/o
st

lu
st
re
/p
tlr
p
c

lu
st
re
/q
uo

ta

lu
st
re
/u
til
s

SLOW=no SLOW=yes

8

We need to be smarter about our tests
https://wikis.clusterfs.com/intra/index.php/Test_Coverage

acceptance-small

SLOW=no 61.5%

SLOW=yes 63.1%

9

https://wikis.clusterfs.com/intra/index.php/Test_Coverage
https://wikis.clusterfs.com/intra/index.php/Test_Coverage

As part of QI we have been talking to customers and
partners

Understand how they hit bugs that we missed

Share our test plans, which we are doing now with Cray

Customer reported issues

10

Enable -Werror (Girish did this)

Concurrent application mix

Pools should not affect roll-back to pre-1.8 releases

Interaction of OST Pools and ACLs/quotas

Testing with failover/recovery

Cray

11

Run racer with at least 4 clients

They noticed 1.6.6 MDS hangs easily with 4 clients

More failover/recovery testing

HP

12

Took >6 months to stabilize 1.6.6

Several attempts to pass on 450 node test

They have over 50 patches on top of 1.6.6

LLNL

13

Large scale stress testing (1000+ clients)

Router testing

Multiple Lustre fs

OSS nodes fail daily; sometimes a single OSS failure
downs whole fs

Dogfood - /home on lustre

Stack overflow

LLNL Requests

14

Concerns about MD performance regressions

ls -l and df perf while running jobs too slow

2 NICs and one NID clients don't use both of servers
nic

Memory regressions

General reliability concerns

LLNL Requests (cont.)

15

COVERAGE

Smarter testing

test more in less time with less resources

More comprehensive and realistic tests

More stress testing

Go deeper in our feature testing

recovery, routers, new features

Goals

17

Unit Tests

Engineers write new test cases

Feature Tests

Automated feature tests (e.g. sanity-quota.sh)

Feature tests developed and performed by QE

Integration Test

acceptance-small runs the automated feature tests

Our Test Hierarchy

18

Feature Tests

Recovery

Most tests - still not production ready

Adaptive timeouts

Small handful of unit tests

Learned much more by scale testing at LLNL

19

Realistic work loads

Real applications if possible

New MPI tests

Ensure Lustre can do used “normally”

Emphasize scale testing

Realistic Testing

20

Improve on SLOW=yes

Well defined testing levels

Same tests always run for a given level

All should be runnable by developers in local
environment

 And by customers

Redefine Testing Levels

21

Testing Levels

Level I - basic integration

Level II - thorough integration, real failovers

Level III - larger scale tests (>4 nodes), long running

... more as needed?

22

AUTOMATION
&

 INFRASTRUCTURE

Provide better tools for developers

Manage information

Better resource utilization

Automated post check-in build and test

(for every commit or batch of commits)

Goals

24

test-framework.sh

Original testing environment

Fragile bash code

Limited ability to create abstractions

Very difficult to manage complex configurations

25

Customers have difficulty running acc-sm

Standardize how configuration is stored and used by
tests

lustre_config is current "supported" lustre
configuration tool

Lustre configuration

26

What We Need

MPI support

Integrate with llapi

Perhaps adding more functionality

Support diverse environments

Provide abstractions useful for testing

27

New environment being proposed

Initially focused on MPI support

New configuration support

Python or Ruby

Explore existing test frameworks

Run alongside existing tests

Test Environment

28

Detailed test tracking

individual tests

pass/fail/skip

duration/error message

other metrics would be nice

History of individual tests (.e.g "sanity test_501g")

Test results & metrics

29

Detect test failures when they happen

Search bugzilla for potentially related failures

Optionally update existing bug or create new one

Web interface to interactively review failures and create
new tickets

Autovetting

30

llcov (test coverage)

rpc traces

profiling data

More data collection

31

Save detailed test info searchable format (database)

Compare test runs

find new failures

perf regressions

Chop search to find regressions

Update bugzilla from autovetted data

Post-run Analysis

32

YALA Improvements

Need more reporting and analysis

Perf-Pit has some of these features already

An intern on Perf-pit team will be working on
improving YALA for us

33

much more efficient than VMware, esp. for kernel code

update guest kernel from outside guest (although not
the modules)

guests boot quickly (~6s on my machine)

supports shared virtual block devices, real failover
testing is easy

Testing on Xen

34

Xen Usage

Fine for Level I testing

Developers can run Level II

Initial feature testing by developers

35

SUMMARY

Coverage

Understand our existing tests

Focus on real-world scenarios

Automation

Manage test result data

Easier to write and use

Improve Reporting

Areas of Improvement

37

Quality
Initiative

Robert Read
rread@sun.com

mailto:rread@sun.com
mailto:rread@sun.com

