Lustre User Group ’S‘B

7/

Whamcloud

Lustre 2.17 and Beyond

Andreas Dilger
Lustre Principal Architect

Lustre Committed to Exascale and the Future S:}

Lustre Top 100
» The preferred choice for the world’s largest systems 100 10

* Majority of Top10 and Top100 HPC systems use Lustre 80 ¢
* World’s largest Al/ML systems (Eos, Selene, X-Al, Scaleway) °
... or 2RU server for workgroup with 16 GPU nodes | | !
2
» Scalability of servers and clients almost without limits 0 i 0
* 100M+ IOPS, 10 M+ metadata op/sec, 100B+ files g 8
* Capacity for any need — 10s TB/s read/write, 100s of PB today, 1 EB+ in the near future
* Fully support large client nodes - 100s of cores, TBs of RAM, multi-400Gbps NICs, GPU RDMA

60

40

Sites in Top100
Sites in Top10

20

SC18 Imms—

SC19
SC24

SC14
SC15
SC16
SC17
SC22
SC23

» Continued improvements for large system deployments
* Steady feature development to meet evolving system and application needs
* Virtualization of filesystem for multi-tenancy and data privacy

» Improving ease-of-use, reliability, and efficiency
* Demand for fast and highly optimized storage is everywhere

whamcloud.com

Storage Management Across Entire Cluster S:B

S _ _ Whamcloud
Data locality, with direct client access to all storage tiers
Metad Obiect S T OST Archive OSTs
Teta :ta Jject EZ?agce't jgfés (0STs) (soon Compressed,
argets ity
Target Erasure Coded
e (MDTs) |)
EE— | : 1 : 1
o v:
—) —
—— ——
I_%_I Object Storage
Metadata |l — Servers [=—--]
Servers (10’s) (100’s)
Transparent
migration
(mmmmn (mmmmn (mmmmn (mmmnn [m— = [| | = =
B (mmmmn] (mmmmn] (mmmm] = | m— = =X >
(mmmmn B B (mmmmn | m— | = [|| o m m >
(mmmmn (mmmmn (mmmmn (mmmmn = =) (X WAN
. : , NVMe OSTs Policy Engine,
Client Cache Lustre Clients (10,000's) ' ' '
NMVe/NVRAM (directly on client network) Data Services Nodes

NFS/SMB/S3/HSM/WAN
3 whamcloud.com

Planned Feature Release Highlights

» 2.17 now open for major feature landings
* Hybrid 10 Optimizations — Hybrid BIO/DIO and server writeback cache (WC, Oracle)
* Dynamic Nodemaps — ephemeral/hierarchical configuration for subdirectory trees (WC)
* File Level Redundancy - Erasure Coding (FLR-EC) — M:N data redundancy (ORNL)
» 2.18 already has some features under development and detailed design

* Client-side Data Compression — reduce network and storage usage/cost (WC, UHamburg)
* Fault Tolerant MGS (LMR-FTM) — mirror MGS service and logs across MDS nodes

* Trash Can/Undelete (TCU) — allow file recovery after accidental/malicious deletion

»2.19 features under discussion for development

* Lustre Metadata Redundancy (LMR1b) — MDTOO0OO services can run on other MDTs
* Metadata Writeback Cache (WBC2) — single-client metadata speedup (WC)

* Lustre Metadata Redundancy (LMR2a) — ROOT directory mirroring to other MDTs

2.16

LNet Improvements S:)
Whamcloud

» |Pv6 large NID support (LU-10391 SuSE, ORNL, HPE)

* Demand for IPv6 in cloud deployments as IPv4 addresses are exhausted.

2.17

* Also enables other large addresses (e.g. direct IB GUID instead of IPolB)

» Mount without server NIDs in configuration logs (LU-10360, WC)
* Servers register with MGS at mount, MGS IR Table sends server NIDs to clients
* Clients can now (optionally) get server NIDs only from MGS IR Table, not config logs
* Simplifies network setup, server migration/failover config, etc.

» Improve handling of MGS with many NIDs (LU-16738, WC) g

&

* Round-robin DNS records for multiple MGS NIDs at mount command-line
* Display MGS hostname instead of NIDs for “mount” and “df” output

» Improve network transfer for sparse reads (LU-16897, WC) 7 N

* Don’t send holes/zero pages over network when no blocks allocated g - g

» Remote LND configuration discovery for EFA LND (LU-18808, AWS)

whamcloud.com

https://jira.whamcloud.com/browse/LU-10391
https://jira.whamcloud.com/browse/LU-10360
https://jira.whamcloud.com/browse/LU-16738
https://jira.whamcloud.com/browse/LU-16897
https://jira.whamcloud.com/browse/LU-18808

Hybrid 10: Improved Application IO Performance (2.17) Sj}

Client nodes are increasingly powerful (CPU, RAM, network) and data intensive
25000

}19.6 GiB/s
20000

» Parallel/large Direct 10/Async IO performance
* Improve large single-thread buffered read/write, 1GB/s->19GB/s
» Unaligned Direct 10 avoids page cache alighment/size restrictions
2.16 < Data copy is not the major 10 bottleneck, only about 10%
2.17 P Hybrid Buffered/Direct 10 automatic |0 mode switching

* Dynamically switch 10 to most efficient 10 submission type 16x =
* Transparent to userspace applications with help of UDIO ~DIO 10000
» Large writes up to 50GB/s with further optimization _a-Buffered
—+—Hybrid
396 MiB/s 5000
/ 1.2 GiB/s
i i = —l .A
/y" —— 4.“* 0
4K 16K 64K 256K 1M aM 16M 64M 256M 1G

16 MiB/s Bandwidth vs I/O Size: Write

6 whamcloud.com

S

Client-Side User Tools Improvements W e
Whamcloud

Sometimes it’s the small things that make a big difference

» 1fs df --mdt/--ost shows only MDT or OST devices (LU-17516 WC)
» 1fs find -xattr/attr finds files with specific attributes (LU-15743 LU-16760 LANL)
» 1fs find -printf/1ls to better display found files (LU-7495 LU-15504 LANL, WC)
» 1fs setstripe -C -Ncreates N (over)stripes per OST, up to 32x (LU-16938 HPE)

2.16 P 1lctl list_param --path prints full pathname for data scraping (LU-17343 WC)

2.17 P Numerous man-page improvements for 1fs and 1ctl sub-commands (LU-4315 WC)
» Allow split 1ctl/1fs sub-commands (e.g. mirror_foo ->mirror foo) (LU-18114 WC)
» 1lctl get/list_param --merge aggregates similar output lines (LU-14590 WC)
» mount.lustre sets client-local parameters from /etc/lustre (LU-11077 WC)
» 1fs find/project/quota allows named projects from /etc/projects (LU-13335 WC)
» 1fs migrate/mirror allow filenames/FIDs from file (LU-18454 WC)

7 whamcloud.com

https://jira.whamcloud.com/browse/LU-17516
https://jira.whamcloud.com/browse/LU-15743
https://jira.whamcloud.com/browse/LU-16760
https://jira.whamcloud.com/browse/LU-7495
https://jira.whamcloud.com/browse/LU-15504
https://jira.whamcloud.com/browse/LU-16938
https://jira.whamcloud.com/browse/LU-17343
https://jira.whamcloud.com/browse/LU-4315
https://jira.whamcloud.com/browse/LU-18114
https://jira.whamcloud.com/browse/LU-14590
https://jira.whamcloud.com/browse/LU-11077
https://jira.whamcloud.com/browse/LU-13335
https://jira.whamcloud.com/browse/LU-18454

Client-Side Functionality Improvements S:B
Whamcloud

Ongoing ease-of-use and performance improvements for users and admins

» Ongoing code updates/cleanup for upstream 6.x kernels (ORNL, HPE, WC, SuSE)

» Allow specifying CPU cores to exclude from CPT list (LU-17501 WC)
* options libcfs cpu_pattern="C[0,1]" skips cores on each NUMA node

» Obfuscate file/dir names in debug logs to limit Pll release (LU-18810 WC)

5> 17 P Reduce RPC latency for client 10 via CPU power states (LU-18446 NVIDIA)
2.18 p Project quota aggregation/nesting (LU-18222 WC)
* Like OST Pool Quotas, allows PROJIDs to be “nested” into larger PROJID limit
» Client-side performance stats via statfs for each target (LU-7880 WC)
» FLR Erasure Coded files with delayed resync (LU-10911 ORNL)
» Discussed upstreaming client into Linux kernel (ORNL, AWS)
8 whamcloud.com

https://jira.whamcloud.com/browse/LU-17501
https://jira.whamcloud.com/browse/LU-18810
https://jira.whamcloud.com/browse/LU-18446
https://jira.whamcloud.com/browse/LU-18222
https://jira.whamcloud.com/browse/LU-7880
https://jira.whamcloud.com/browse/LU-10911

Server-side Usability Improvements S:}

Whamcloud
Ongoing improvements to usability and robustness for ease of management

» OST Pool Spilling avoid out of space with hybrid OST tiers (LU-15011 WC)

» 11jobstat utility for easily monitoring "top/bad" jobs on MDT/OST (LU-16228 WC)
2.16 * Add 10 size histograms to job_stats output, handle bad job names better

2.17 P Hidden and read-only attributes for files/dirs (LU-18615 AWS)

» Network Request Scheduler TBF (QOS) improvements
* Rules by nodemap name (LU-17902 WC)
* Rules by project ID (LU-17166 CEA, WC)
2.17 * Rules with UID/GID/PROIJID ranges (LU-18509 WC)

2.18 P Default NRS TBF rule(s) to keep “bad” jobs in check out of the box (LU-17296)
* Help avoid “noisy neighbor” out of the box, and further tunable as needed

» Enable default PFL layout on newly-formatted filesystems (LU-11918)

* Simplify usage and improve performance for most configurations

9 whamcloud.com

https://jira.whamcloud.com/browse/LU-15011
https://jira.whamcloud.com/browse/LU-16228
https://jira.whamcloud.com/browse/LU-18615
https://jira.whamcloud.com/browse/LU-17902
https://jira.whamcloud.com/browse/LU-17166
https://jira.whamcloud.com/browse/LU-18509
https://jira.whamcloud.com/browse/LU-17296
https://jira.whamcloud.com/browse/LU-11918

2.17

Server-side Capacity and Efficiency Improvements S:B
Whamcloud

Ongoing performance and capacity scaling for next-gen servers and storage

» More rename locking optimizations (Spark, ...) APACHE‘AZ

* Reduce BFL lock hold time via speculative trylock (LU-17427 WC) Spqr’(

» Memory reduction for LDLM, JobStats (multiple)
» flock performance and scalability improvements (LU-17276 WC, SUSE)
» Read and return small directory contents on open (LU-18448 HPE)

» RAM-based OSD backend for testing/shared memory (LU-17995, LU-18813 AWS, WC)
* Initially useful for API testing, code consolidation, benchmarking

2.18

10

* Potentially useful for ephemeral workloads needing very large shared memory
» OST writeback cache for small, lockless, direct writes (LU-12916 WC)
* Lower latency, small write aggregation, no lock ping-pong
* Use Idiskfs delayed allocation (delalloc) until OST write is large enough, default 64KiB
* Dynamic cache selection, complementary with client Hybrid Buffered/Direct 10

whamcloud.com

https://jira.whamcloud.com/browse/LU-17427
https://jira.whamcloud.com/browse/LU-17276
https://jira.whamcloud.com/browse/LU-18448
https://jira.whamcloud.com/browse/LU-17995
https://jira.whamcloud.com/browse/LU-18813
https://jira.whamcloud.com/browse/LU-12916

Ongoing ldiskfs and e2fsprogs Improvements S:B
Whamcloud

» Persistent TRIMMED flag on block groups during fstrim (LU-14712 WC)
* Avoid useless TRIM commands on device after reformat and remount

» More efficient Idiskfs mballoc for large filesystems (LU-14438 Google, IBM, WC)

2.17 * Backport improved list-/tree-based group selection from upstream kernel
2.18 p Hybrid Idiskfs LVM storage devices (NVMe+HDD) (LU-16750 WC)
* Allow storing metadata on NVMe at start of device, data on HDDs at end of device
» Enable |diskfs delayed allocation for writeback cache (LU-12916 WC)
* Allow aggregating small writes in server RAM instead of read-modify-write to client
» Parallel e2fsck for pass2/3 (directory entries, name linkage) (LU-14679 WC)
11

whamcloud.com

https://jira.whamcloud.com/browse/LU-14712
https://jira.whamcloud.com/browse/LU-14438
https://jira.whamcloud.com/browse/LU-16750
https://jira.whamcloud.com/browse/LU-12916
https://jira.whamcloud.com/browse/LU-14679

D)
7/

Improved Data Security and Multi-tenancy
Whamcloud

Increasing demand to isolate users and their data for legal/operational reasons

CPU

GPU

Clients Clients

Large
Memory

» Nodemap ID offset range for UID/GID/PROJID mapping (LU-18109 WC)

offset|300k

» Kerberos fixes and improvements (multiple NVIDIA, WC)
» Client-local root capability in nodemap (LU-18694 WC)
* Allow root operations (chown, quota) within ID offset range

offset|100k offset ROOk

» Dynamic/hierarchical nodemap configuration (LU-17431 WC)
* In-memory nodemap configuration for short-lived group (batch job)
» Multiple and read-only filesets per nodemap (LU-18357 WC) "\“\,/‘
» Configurable capabilities mask per nodemap (LU-17410 WC) g a
2.17 * Defaults to all client capabilities disabled for security
2.18 p Encrypted fscrypt backup/restore without key (LU-16374 WC) //”'
whamcloud.com

12

https://jira.whamcloud.com/browse/LU-18109
https://jira.whamcloud.com/browse/LU-18694
https://jira.whamcloud.com/browse/LU-17431
https://jira.whamcloud.com/browse/LU-18357
https://jira.whamcloud.com/browse/LU-17410
https://jira.whamcloud.com/browse/LU-16374

Client FLR Erasure Coded Files (2.17+, ORNL) ok
Whamcloud

» Erasure coding adds data redundancy without 2-3x mirror overhead
* Improve data availability above hardware and network reliability

* Initial target for large read-mostly files, adds redundancy/availability with low cost

» Add erasure coding to new/old striped files after write completed
* Delayed redundancy avoids overhead during initial application write

» For large striped files - add N parity per M data stripes (e.g. 8d+2p or 16d+3p)

* Fixed RAID-4 parity layout per file, declustered by file, CPU-optimized EC code (Intel ISA-L)
* EC RAID pattern independent of number of stripes in file, works with PFL layouts
* Can survive full OST loss with minimal recovery delay, transparent to applications

e N i 0 I e s o I 2
OMB 1MB ... 15M 16M 17M 31M

128 129 ... 143 144 145 159
256 257 ... 271 272 273 287

Existing stripes... Parity stripes added... Existing stripes... Parity stripes added...

14

whamcloud.com

https://software.intel.com/en-us/storage/ISA-L

Client-Side Data Compression (2.17+ WCQC) Sj}
Whamcloud

Increased capacity and lower cost per GB for all-flash OSTs

» Parallel (de-)compression of RPCs on client cores for GB/s speeds, reduces server CPU load

» (De-)Compress (1zo, 1z4, zstd,..) RPC on client in chunks (64KiB-4MiB+)

* Per directory or file component selection of algorithm, level, chunk size (PFL, FLR)
* Keep "uncompressed" chunks as-is for incompressible data/file (. gz, .jpg, .mpg, ...)

Client RAM 64KiB 64KiB 64KiB vee 1MB of chunks eee 64KiB
Incompressible data
left unchanged Uncompressed Data

RPC staging buffer AKiB OKiB 64KiB oo 3 Compression Header (32B)
t Compressed Data

OST object storage AKiB OKiB 64KiB see B 4KB Alignment Padding

» Client writes/reads whole chunk(s), (de-)compresses to/from RPC staging buffer
* Larger chunks improve compression, but higher decompress/read-modify-write overhead

» Could write uncompressed to one FLR mirror for random 10 pattern
* Data (re-)compression during mirror/migrate to second mirror on slow tier (via data mover)

15 whamcloud.com

Trash Can/Undelete for Files and Directories (2.18 WC) Sj}
Whamcloud

» Allow files/directories to be undeleted after rm/rmdir
* Rescue users from fat-finger mistakes or malicious scripts
* Handle “rm -r” properly to allow whole-tree recovery

» Deleted files in trash are flagged and treated specially

* Removed from user/group/project quota and df usage

* Files cannot be read to avoid abuse, and apps know files are deleted
» Virtual . Trash directory visible in every directory

* Can use normal tools to list and recover files or directories

* .Trash s hidden from normal directory listing
» Users can view and recover their own files

* Configurable expiry time before cleanup (e.g. max age = 7d)
* Configurable filesystem fullness threshold (e.g. 80% full)
* More sophisticated cleanup policy in userspace (e.g. by user, project, nodemap)

16 whamcloud.com

Lustre Metadata Redundancy (LMR) (2.18+) b
Whamcloud

» LMR1a: Fault Tolerant MGS (LU-17819)

» LMR1b: Replicate services to other MDTs
* Mirror FLDB, Quota, flock() scaling over MDTs
» LMR1c: DNE performance (LU-7426)
* Improve llog transaction ordering/sync D|r
* Improves all DNE operation performance Dir
» LMR2: Replicate top-level dirs for availability
 2a: ROOT/ (rarely changed) mirrored to other MDTs

* 2b: Subdirectories mirrored to 2+ MDTs (via setdirstripe)
» 2c: Per-file metadata replication in a later stage

* 2d: e2fsck to allow directory entries with multiple FIDs MDT0002 MDT0005
» LMR3: Complex recovery handling
* Write to directory while mirror offline, full MDT rebuild

» LMR4: LFSCK to repair/rebuild inconsistent mirrors

FID FID D|r
2:6 5:9

17

whamcloud.com

https://jira.whamcloud.com/browse/LU-17819
https://jira.whamcloud.com/browse/LU-7426

Fault Tolerant MGS (LMR-FTM) (2.18 WCLVMS? .
mciou

» Run MGS service on multiple MDS nodes for availability (LU-17819)

* Allow clients to get config llogs from any MGS node

* Reduces mount time/timeouts, distributes load in large clusters
* MGS Imperative Recovery even if “primary” MGS node restarts

» Mirror MGS config logs to remote MDTs for redundancy
* Use RAFT Consensus algorithm to coordinate MGS cluster

* MGS Leader election, heartbeat, consistent log updates
* Append-only logs, matches existing MGS config llog format

whamcloud.com

https://jira.whamcloud.com/browse/LU-17819

MDTO0000 removal/replacement (LMR1b/2a) (2.18+)

» Remove critical service dependency on MDT0000
» Mirror FLDB to all servers (maps FID->MDT/OST)

» Quota Manager migrated/mirrored to multiple servers ({4 l
» Hash distribution by UID/GID/PROJID, easily parallel operations (S o
» LDLM flock() distribution and scaling over multiple MDS nodes

* The flock() locking is not really related to MDT inodes, so can be anywhere

* Need to handle deadlock detection, but is disjoint for process groups
» Mirror ROOT/ directory to multiple MDTs

* Rarely changes for most uses, some update overhead is acceptable
» Enough to allow removing/replacing MDTO00O on live system

S

7/

Whamcloud

whamcloud.com

Metadata Writeback Cache (WBC2)

Client

-—— —_—— -

—— o ————

20

- ————

Batched & Aggregated
Metadata Flush

Client

@ Normal directory
@ Cached on client
‘::,‘ Not flushed to MDT

(WC 2.18+) S
Whamcloud
10-100x speedup for single-client create-intensive workloads

* Gene extraction/scanning, untar/build, data ingest, producer/consumer

» Create new dirs/files in client RAM without RPCs

* Lock new directory exclusively at mkdir time
* Cache new files/dirs/data in RAM until cache flush or remote access

» No RPC round-trips for file modifications in new directory
» Batch RPC for efficient directory fetch and cache flush

» Files globally visible on remote client access
* Flush top-level entries, exclusively lock new subdirs, unlock parent
* Flush rest of tree in background to MDS/OSS by age or size limits

» Productization of WBC code well underway
* Some complexity handling partially-cached directories
* Need to integrate space usage with quota/grant

whamcloud.com

V4

Metadata WBC Performance Improvements s

900,000 Whamcloud
File creation mdtest on Network File Systems
800,000 B File stat 767,049
700,000 m File read
M File removal
600,000
505,199

500,000 456,030
400,000 370,981
300,000
200,000
100,000

0 1,941 11,039 4,991 2,197 3,837 6,518 5,671 6,608

NFS Lustre Lustre WBC

Lustre: DDN AI400X Appliance (20 X SAMSUNG 3.84TB NVMe, 4X IB-HDR100)
Lustre clients: Intel Gold 5218 processor, 96 GB DDR4 RAM, CentOS 8.1

Local File System on SSD: Intel SSDSC2KB240G8
21 whamcloud.com

On the Evolution of 10 Interfaces

» POSIX has been the standard 10 interface for decades

* Protects substantial investment in developed applications and tools
* Avoids applications chasing interface-of-the-month and expensive rewrites

» Opt-in API extensions for apps with special performance needs
* Relaxed semantics/interfaces when/where applications need/understand it
* Avoids issues with changes in behavior - which subset of POSIX is OK?
* Data stored and continues to be accessible via standard APIs afterward
* Applications can leverage extensions via common libraries or directly
* Should we add an optimized native KV interface to Lustre clients?

» Continuous underlying optimizations speed up existing applications
* Unaligned/Hybrid |10, cross-dir/file prefetch, WBC for creates

* Asynchronous meta/data ops via Linux io_uring, batched file create API

» POSIX will continue to be the most common interface going forward

S

7/

Whamcloud

Thank You!

O

don

