
# 

Lustre DNE3
.Busting the Small Files Myth.

# 

Steve Crusan and Brock Johnson 

Agenda

Who is HRT?

Mythbusting Lustre small file / metadata
performance

Design decisions for better metadata
performance/scaling

Lustre Wishlist

Summary

Topics 

3 

About HRT

Hudson River Trading (HRT) is a multi-asset class quantitative trading firm that
provides liquidity on global markets and directly to our clients.

Not Traditional HPC
We go beyond classic

checkpoint/restart
workloads.

Flexible Storage Needs
Supports loosely coupled,

parallel workloads.

User-Centric Approach
No rigid pipelines; users can

experiment freely.

NFS Experts
Deep understanding of

consistency and coherence
models.

High Reliability
Downtime and built-in

performance issues are
unacceptable.

Generalized Scratch Space 
Supports a wide range of workloads and
allows users extreme levels of
experimentation and productivity. 

Scalable and Resistant 
Lustre (especially with DNE3) excels at
handling large, complex workloads 

Not All Storage is Equal 
Some systems perform better for specific
tasks (more on this later). 

How We Use Lustre

Performance Matters 
We measure inefficiencies in throughput,
IOPS, and metadata, and most
importantly, overall job runtime and CPU
vs I/O efficiency. 

Lustre as a Tactical Asset
● Debugging Power

● Isolation for Analysis

● Deep Visibility

● Robust Troubleshooting

● Leveraging Community
Insights

What We’ve Learned

Heavy DNE3 User
Running at scale since late 2021.

Real-World Challenges
Issues emerged only under sustained,
large-scale use.

Lessons Learned
Early growing pains, but strong long-term
performance.

Whamcloud Partnership
Exceptional support throughout our journey.

# 

# 

DNE3 Small File
Mythbusting

Where did this idea come from?

And Were the Haters Right?

Many institutions worked around this by optimizing code
to reduce metadata load.

DNE1 Arrives (Lustre 2.4/2.5 LTS) – Introduced directory
“pinning” to specific MDTs.

Lustre was late to active/active metadata servers, but discussions predate v1.0.

HPC “Common Knowledge” – Small files on Lustre were a no-go.

MDT0 Overload – Accidental metadata-heavy workloads caused system-wide issues.

Limited Adoption – Most sites stuck to single
active/passive MDS setups.

Laid the Groundwork for DNE3 – Over a decade in the
making.

DNE3: Solving Small File Scalability
Challenges
The Evolution of DNE

DNE2 Introduced – Intended to address highly concurrent
directories, but adoption was limited.

Manual Effort Required – Admins had to handcraft DNE1
directory trees to balance load.

Performance Potential – Helped in specific cases (e.g., io500
mdtest-hard) with DNE2, manual “load balancing” with DNE1.

The Problem Before DNE3

Artificial Hotspots – Even well-balanced DNE1 setups led to
per-user metadata bottlenecks.

Scalability Issues – Without DNE3, Lustre required active
manual intervention for efficiency.

Common Pitfall – Over time, MDT imbalance emerged (e.g.,
MDT0 fills up while others sit empty).

So… Were the Haters Right?
Yes (Historically)

Small file performance wasn’t a priority in early Lustre use cases.

Limited real-world testing and public benchmarking reinforced
the perception.

Without careful manual DNE1 planning, metadata performance
could suffer.

No (Today)

PFL + DoM (since Lustre 2.10/2.13) significantly improved small
file handling.

DNE3 Automates Scaling – No more manual metadata
allocation/performance headaches.

Major Metadata Improvements – Ongoing optimizations over
the last 6–7 years.

io500 Benchmarking – A key driver in detecting and improving
performance issues.

DNE3 small file
mythbusting 
 

.Examples. 

Myth: Lustre Can’t Handle Many Files

✅ Reality: Lustre scales. We’ve managed 25B+ files/dirs on a
single filesystem.

THE NUMBERS

80/20 Rule – A few users drive most inode usage.

<3% Inode Imbalance – Evenly distributed metadata across MDTs.

Expected Scale – 5–10B files per filesystem (minimum), always planning for much more.

Minimal Admin Overhead – No major performance issues in most cases.

 

Myth: Lustre Performs Poorly for Small Files

REAL-WORLD EXAMPLE: 25B+ FILES/DIRS IN ACTION

High-Intensity Workload – Always running, always pushing storage limits.

Crashes Non-Lustre Systems – Moved after multiple failures elsewhere.

Massive Directory Trees – 100K+ items per directory, constant growth.

Complex File Operations – Frequent small file creation, symlink resolution, and multi-user queries.

Evenly Distributed Load – No common MDT bottlenecks or performance degradation.

✅ Reality: Lustre handles massive, dynamic small-file
workloads efficiently.

Myth: Lustre Performs Poorly for Small Files

REAL-WORLD EXAMPLE: MISCONFIGURED APP CHAOS

Extreme Open/Close Cycles – App constantly stat’ed, truncated, wrote, and closed files.

Other POSIX Systems Failed – The workload overwhelmed every other storage systems.

Lustre Took the Hit – Moved the workload to Lustre, which handled it successfully.

Next Slide: Live Metadata Counters – Data pulled from Lustre server-side counters via REST API.

Open Call Bug – Open() calls weren’t logged, so add ~1M additional opens.

✅ Reality: Lustre handled a misconfigured, high-intensity
small-file workload that broke other systems.

Myth: Lustre Performs Poorly for Small Files

REAL-WORLD EXAMPLE: GUID-STYLE DIRECTORY TREES

User Workaround – Instead of single directories with many files, users built B-tree style hashed paths (2-3+ levels
deep).

Parallel Execution – Massive multi-threaded compute grid writes and reads files simultaneously.

Heavy LDLM – Each thread stat()s and creates (overlapping) parent directories, adding lock contention.

Some Systems Struggled – Performance bottlenecks on other storage systems led to repeatable benchmarking.

Measurable Performance Data – Created explicit timing benchmarks to track scaling behavior.

✅ Reality: Lustre efficiently handles deeply nested,
high-concurrency metadata workloads.

Myth: Lustre Performs Poorly for Small Files

BENCHMARK INSIGHTS

 A Close Second – Lustre closely trails the top-performing NFS-based system.

Similar Architectures – The #1 system shares DNE3’s directory ownership/sharding model, validating its approach.

Consistent Results – Thousands of tests show stable rankings over years, across versions, kernels, and system
sizes.

The Competition? Not Even Close – Other storage systems are orders of magnitude slower under high concurrency.

Impact Beyond Benchmarks – Many non-Lustre systems see latency spikes and degraded performance for
unrelated workloads while this GUID-tree populator is running.

✅ Reality: Lustre ranks #2 in a repeatable benchmark, proving
DNE3’s effectiveness.

Myth: Lustre Performs Poorly for Small Files

BENCHMARK INSIGHTS

Lustre Excels in io500 – Check the production and 10-node production rankings.

Transparent & Reproducible – Click “Reproducible” on any Lustre/EXAScaler system to see exact configurations.

Example: io500 Entry #723 – DNE3 was already enabled, no exotic tuning needed.

Proof in the Numbers – High performance isn’t just theoretical—it’s been tested at scale.

HRT’s Next Steps? – Greenlight to submit io500 for one of our systems, just haven’t done it yet. Some other “big claim”
vendors have zero entries, or we’d need an electronic microscope to read the carbon data.

✅ Reality: Lustre Consistently Scores High on io500
Benchmarks.

https://io500.org/questionnaires/view/723

Lustre, Like Everything Else, Has Varied
Small File Performance

Lustre is competitive and always improving.

Don’t dismiss Lustre for small files—evaluate it
based on real-world needs.

Addressing the Critics
Performance is
Context-Dependent
Radar Chart Perspective – Across our internal
metadata workloads and io500, Lustre would be
a close second overall.

The #1 Filer? – Excels in metadata operations,
but limited in scaling and throughput.

Performance Variability – Lustre can be:
● Best-in-class for certain workloads
● Average for others
● Up to 20% slower in some cases

“I Found Something That Runs Poorly on Lustre!”
– Believable. But what’s the context?

Legacy Code? – Running 20-year-old Fortran
might not be optimized.

No Storage System is Magic – Every system has
trade-offs.

The Real Takeaway

Lustre Metadata
Design
Considerations

Mixing OSS & MDS on the Same Server

● Heavy OST throughput blocks metadata IOPs due
to CPU/NIC contention.

● No amount of QoS, thread prioritization, or clever
tuning will fully solve this.

● Rule of thumb: Keep data (OSS) and metadata
(MDS) separate.

Oversizing DoM (Data-on-Metadata)

● Max DoM size = 1GB—setting it too high turns your
MDS into a throughput bottleneck.

● Instead, use PFL layouts:
● DoM (optional) → Flash OST → HDD OST (See

ORNL LUG 2022/2023 for examples).

 

Over-Provision Metadata Storage 

● Prioritize metadata capacity/performance
over data capacity/performance 

● Extra 50T of metadata > Extra 50T of data
storage if budget constrained 

● Extra MDS pairs/sets > Extra OSS pairs/sets (in
most cases). 

Optimize DNE3 Round-Robin Depth 

● Default DNE3 depth = 3, then switches to
space balancing. 

● We use 17 at the root of project/user trees,
delaying space balancing. 

● Space balancing is largely handled by
randomization/round robin—deeper
allocations improve performance! 

 

Don’tDo

Lustre Wishlist

Lustre general wishlist

Faster Failover &
Recovery
Reduce 3-5m hangs → < 1m to support
more workloads. 

Improved Metadata & Data
Management
Automate balancing; manual
expansion is impractical. 

Flexible Storage with FLR
Erasure Coding
Move beyond RAID & ZFS dependencies;
let Lustre handle redundancy. 

Native High Availability (HA)
Stack
Replace corosync/pacemaker with
Lustre-native failover logic. 

# 

Summary 

In closing…

Fix Your Code
“A supercomputer is a device for turning
compute-bound problems into I/O-bound
problems.”

- Ken Batcher

Open Source Wins
Again
Lustre’s Legacy: Dominating storage for
TOP10/100/500 systems for decades.

Long-Term Success: Strong initial design,
continuous development, and community
contributions.

Beyond HPC: Now excelling in modern,
complex non-HPC workloads.

Competition Comes
and Goes
Common critiques:

● “Outdated architecture”
● “Not built for flash”
● “Too brittle”

Lustre Endures – 25+ years of real-world
testing, feedback, and expertise.

Most competitors haven’t been
battle-tested at scale.

Lustre is quite good at small
files / metadata performance
now, it’s time to stop saying
otherwise.

And finally…

Questions? 
 
I charge 1 beer per question, which will be
collected at happy hour.

We’re Hiring!
Whatever your experience lies in, we’re always looking for
talented engineers.

www.hudsonrivertrading.com/careers/

# 

Thanks!
Special thanks (in no particular order):

HRT

Whamcloud/DDN

Lustre Community

Our Users

# 

